

Types of Software Bill of Material (SBOM) Documents
Introduction
Today there is a widely used definition of the minimum content of a Software Bill of Material (SBOM).1
However, an SBOM may contain different forms of the minimum information sourced from different
product artifacts. Given the disparate ways SBOM data can be collected, tool outputs may vary and
provide value in different use cases. This document summarizes some common types of SBOMs that
tools may create today, along with the data typically presented for each type of SBOM. An SBOM
document may combine information for multiple SBOM types.

Definitions and Discussions
The following two tables summarize the different types of SBOMs and the benefits and limitations of
each type. This list of SBOM types is not intended to be tightly tied to the software lifecycle. Some
SBOM types may be available and useful across multiple lifecycle phases, while others may be
available only in one lifecycle phase. Also, the data presented within an SBOM type may vary,
depending on the software’s lifecycle phase and industry.

Table 1: SBOM Type Definition and Composition

SBOM Type Definition Data Description

Design SBOM of intended, planned software project or product with
included components (some of which may not yet exist) for a
new software artifact.

Typically derived from a design
specification, RFP, or initial concept.

Source SBOM created directly from the development environment,
source files, and included dependencies used to build an
product artifact.

Typically generated from software
composition analysis (SCA) tooling,
with manual clarifications.

Build SBOM generated as part of the process of building the
software to create a releasable artifact (e.g., executable or
package) from data such as source files, dependencies, built
components, build process ephemeral data, and other
SBOMs.

Typically generated as part of a
build process. May consist of
integrated intermediate Build and
Source SBOMs for a final release
artifact SBOM.

Analyzed SBOM generated through analysis of artifacts (e.g.,
executables, packages, containers, and virtual machine
images) after its build. Such analysis generally requires a
variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Typically generated through
analysis of artifacts by 3rd party
tooling.

Deployed SBOM provides an inventory of software that is present on a
system. This may be an assembly of other SBOMs that
combines analysis of configuration options, and examination
of execution behavior in a (potentially simulated) deployment
environment.

Typically generated by recording the
SBOMs and configuration
information of artifacts that have
been installed on systems.

1 https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

1 https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

Disclaimer: This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when
information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for
public release. Subject to standard copyright rules, TLP:CLEAR information may be distributed without restriction.
For more information on the Traffic Light Protocol, see http://www.cisa.gov/tlp/.

https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

Runtime SBOM generated through instrumenting the system running
the software, to capture only components present in the
system, as well as external call-outs or dynamically loaded
components. In some contexts, this may also be referred to
as an “Instrumented” or “Dynamic” SBOM.

Typically generated from tooling
interacting with a system to record
the artifacts present in a running
environment and/or that have been
executed.

Table 2: Understanding the Benefits and Limitations of SBOM Types

SBOM Type Benefits Limitations

Design - Highlight incompatible components ahead of
licensing purchase or acquisition.
- Defines approved or recommended included
component list for developer use.

- This may be very difficult to generate.
- Unlikely to identify as much detail as found in
other SBOM types.

Source - Provides visibility without access to build
process.
- Can facilitate remediation of vulnerabilities at
the source.
- Can provide a view into the dependency tree /
hierarchy of the included components.

- Can highlight components (which might have
vulnerabilities) that never run or are compiled
out in deployed code.
- Depending on language/ecosystem, may not
include runtime, plugin, or dynamic
components, like appserver or platform
libraries.
- May require references to other SBOMs for
completeness..

Build - Increases confidence that the SBOM
representation of the product artifact is correct
due to information available during the build
and/or Continuous Integration/Continuous
Deployment (CI/CD) processes.
- Provides visibility into more components than
just source code.
- Increased trust by enabling signing of the
SBOM and product artifact by the same build
workflow.

- Potentially have to change the build process
to generate this SBOM.
- Highly dependent on the build environment in
which the build is executed.
- May be difficult to capture indirect and/or
runtime dependencies.
- May not contain the correct versions of
dynamically linked dependencies (as they may
be replaced at runtime depending on
language/ecosystem).

Analyzed - Provides visibility without an active
development environment, such as legacy
firmware artifacts.
- Does not need access to the build process.
- Can help verify SBOM data from other sources.
- May find hidden dependencies missed by other
SBOM type creation tools.

- May be prone to omissions, errors, or
approximations if the tool is unable to
decompose or recognize the software
components precisely.
- May depend on heuristics or context-specific
risk factors.

Deployed - Highlights software components installed on a
system, including other configurations and
system components used to run an application.

- May require changing install and deploy
processes to generate.
- May not accurately reflect the software’s
runtime environment, as components may
reside in inaccessible code.

Runtime - Provides visibility to understand what is in use
when the system is running, including
dynamically loaded components and external
connections.
- Can include detailed information about whether
components are active and what parts are used.

- Requires the system to be analyzed while
running, which may require additional
overhead.
- Some detailed information may be available
only after the system has run for a period of
time until the complete functionality has been
exercised.

Conclusion
These definitions are meant as a starting point for clarifying SBOM types that varying tooling types and
methods may create. Different tooling approaches may be required to create the same SBOM type for
different kinds of software. This document may evolve as the innovation around SBOMs and their uses
may require the addition of more SBOM types. Progress in adopting and refining Vulnerability
Exploitability eXchange2 (i.e., VEX), service dependencies, and “SBOM of SBOMs,” among others,
may require additional types of SBOMs.

If you would like to learn more about tooling associated with SBOMs, reach out to
SBOM@cisa.dhs.gov.

2 See https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf for an initial overview. More information
will be available at https://www.cisa.gov/sbom.

mailto:SBOM@cisa.dhs.gov
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

About this document:
This document was drafted by a community-led working group on SBOM Tooling and Implementation,
facilitated by CISA. It is not an official US government document.

Document drafting and preparation for CISA publishing was led by Kate Stewart (Linux Foundation)
and Melissa Rhodes (Medtronic).

Pete Allor, Red Hat
Tom Alrich, Tom Alrich LLC
Scott Armstrong, Interos
Sridhar Balasusubramanian, NetApp
Andrew B. Bartels, Operant Networks
Jeffrey Brown, GEHC
Jean Camp, Indiana University
Anesu Chaora, Indiana University
Emily Fesnak, Deloitte
Brian Fox, Sonatype Inc.
Joyabrata Ghosh, Elektrobit
Alex Goodman, Anchore
Charles Hart, Hitachi Ltd.
Paul Horton, Sonatype Inc.
Nisha Kumar, Oracle
Bob Martin, MITRE
Katherine McAdams, HPE Aruba
Deanna Medina, Honeywell
Jeff Miller, NowSecure
Samuel Moore, T-Mobile
Behzad Mottahed, BD
Christine O’Leary, Intel
Surendra Pathak, Interlynk Inc.
Bill Pelletier, ZOLL Medical
Dmitry Raidman, Cybeats
Jim Routh, Retired
Aditi Sharma, Dell Technologies
David Shelly, GE
John Schiel, Lumen Technologies
Rich Steenwyk, GE HealthCare
Jeremiah Stoddard, INL
Allan Friedman, CISA
Megan Doscher, CISA
Justin Murphy, CISA
Kuldeep Sandhu, CISA
Jonathan Spring, CISA
Hendrik Tjoelker, Hanze University Groningen
Oscar van der Meer, MergeBase
Bhargav Vivekanandan, Blue Shield of California
David A. Wheeler, Linux Foundation
Jeff Williams, Contrast Security
Janet Worthington, Forrester Research

Curtis Yanko, GrammaTech
Keith Zantow, Anchore

Others participated, but do not wish to be named. Input into this document was also provided by some
members of the OpenSSF “SBOM Everywhere” SIG and as well as some members of the CISA SBOM
“Tooling and Implementation” workstream.

	Introduction
	Definitions and Discussions
	Conclusion

