CYBERSECURITY Advisory

TLP:CLEAR

Product ID: AA23-187A

Authored by:

Communications Security Establishment Canadian Centre for Cyber Security July 6, 2023 Centre de la sécurité des télécommunications

Centre canadien pour la cybersécurité

Increased Truebot Activity Infects U.S. and Canada Based Networks

SUMMARY

The Cybersecurity and Infrastructure Security Agency (CISA), the Federal Bureau of Investigation (FBI), the Multi-State Information Sharing and Analysis Center (MS-ISAC), and the Canadian Centre for Cyber Security (CCCS) are releasing this joint Cybersecurity Advisory (CSA) in response to cyber threat actors leveraging newly identified Truebot malware variants against organizations in the United States and Canada. As recently as May 31, 2023, the authoring organizations have observed an increase in cyber threat actors using new malware variants of **Truebot** (also known as <u>Silence.Downloader</u>). Truebot is a botnet that has been used by malicious cyber groups like <u>CLOP</u> <u>Ransomware Gang</u> to collect and exfiltrate information from its target victims.

Previous Truebot malware variants were primarily delivered by cyber threat actors via malicious phishing email attachments; however, newer versions allow cyber threat actors to also gain initial access through exploiting CVE-2022-31199—(a remote code execution vulnerability in the Netwrix Auditor application), enabling deployment of the malware at scale within the compromised environment. Based on confirmation from open-source reporting and analytical findings of Truebot variants, the authoring organizations assess cyber threat actors are leveraging both phishing campaigns with malicious redirect hyperlinks and CVE-2022-31199 to deliver new Truebot malware variants.

The authoring organizations recommend hunting for the malicious activity using the guidance outlined in this CSA, as well as applying vendor patches to Netwrix Auditor (<u>version 10.5</u>—see Mitigations section below).[1] Any organization identifying indicators of compromise (IOCs) within their environment should urgently apply the incident responses and mitigation measures detailed in this CSA and report the intrusion to CISA or the FBI.

To report suspicious or criminal activity related to information found in this joint Cybersecurity Advisory, contact <u>your local FBI field office</u> or CISA's 24/7 Operations Center at <u>Report@cisa.gov</u> or (888) 282-0870. When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. SLTT organizations should report incidents to MS-ISAC (866-787-4722 or <u>SOC@cisecurity.org</u>).

This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For more information on the Traffic Light Protocol, see <u>cisa.gov/tlp</u>.

TLP:CLEAR

Read the associated Malware Analysis Report: <u>MAR-10445155-1.v1 Truebot Activity Infects U.S. and</u> <u>Canada Based Networks</u>

For a downloadable copy of IOCs in .xml and .json format, see:

- <u>AA23-187A.STIX.XML</u>
- <u>AA23-187A.STIX.JSON</u>

TECHNICAL DETAILS

Note: This advisory uses the <u>MITRE ATT&CK® for Enterprise</u> framework, version 13. See the <u>MITRE</u> <u>ATT&CK Tactics and Techniques</u> section below for cyber threat actors' activity mapped to MITRE ATT&CK tactics and techniques.

Initial Access and Execution

In recent months, open source reporting has detailed an increase in Truebot malware infections, particularly cyber threat actors using new tactics, techniques, and procedures (TTPs), and delivery methods.[2] Based on the nature of observed Truebot operations, the primary objective of a Truebot infection is to exfiltrate sensitive data from the compromised host(s) for financial gain [TA0010].

- Phishing:
 - Cyber threat actors have historically used malicious phishing emails as the primary delivery method of Truebot malware, which tricks recipients into clicking a hyperlink to execute malware. Cyber threat actors have further been observed concealing email attachments (executables) as software update notifications [T1189] that appear to be legitimate [T1204.002][T1566.002]. Following interaction with the executable, users will be redirected to a malicious web domain where script files are then executed. Note: Truebot malware can be hidden within various, legitimate file formats that are used for malicious purposes [T1036.008].[3]

• Exploitation of CVE-2022-31199:

Though phishing remains a prominent delivery method, cyber threat actors have shifted tactics, exploiting, in observable manner, a remote code execution vulnerability (CVE-2022-31199) in Netwrix Auditor [T1190]—software used for on-premises and cloud-based IT system auditing. Through exploitation of this CVE, cyber threat actors gain initial access, as well as the ability to move laterally within the compromised network [T1210].

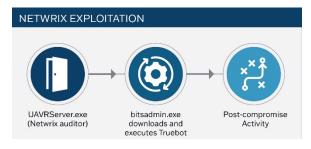


Figure 1: CVE-2022-31199 Delivery Method for Truebot

Following the successful download of the malicous file, Truebot renames itself and then loads <u>FlawedGrace</u> onto the host. Please see the <u>FlawedGrace</u> section below for more information on how this remote access tool (RAT) is used in Truebot operations.

After deployment by Truebot, FlawedGrace is able to modify registry [T1112] and print spooler programs [T1547.012] that control the order that documents are loaded to a print queue. FlawedGrace manipulates these features to both escalate privilege and establish persistence.

During FlawedGrace's execution phase, the RAT stores encrypted payloads [T1027.009] within the registry. The tool can create scheduled tasks and inject payloads into msiexec.exe and svchost.exe, which are command processes that enable FlawedGrace to establish a command and control (C2) connection to 92.118.36[.]199, for example, as well as load dynamic link libraries (DLLs) [T1055.001] to accomplish privilege escalation.

Several hours post initial access, Truebot has been observed injecting <u>Cobalt Strike</u> beacons into memory [<u>T1055</u>] in a dormant mode for the first few hours prior to initiating additional operations. Please see the <u>Cobalt Strike</u> section below for more information on how this remote access tool (RAT) is used in Truebot operations.

Discovery and Defense Evasion

During the first stage of Truebot's execution process, it checks the current version of the operating system (OS) with RtlGetVersion and processor architecture using GetNativeSystemInfo [T1082].[4] Note: This variant of Truebot malware is designed with over one gigabyte (GB) of junk code which functions to hinder detection and analysis efforts [T1027.001].

Following the initial checks for system information, Truebot has the capability to enumerate all running processes [T1057], collect sensitive local host data [T1005], and send this data to an encoded data string described below for second-stage execution. Based on IOCs in table 1, Truebot also has the ability to discover software security protocols and system time metrics, which aids in defense evasion, as well as enables synchronization with the compromised system's internal clock to facilitate scheduling tasks [T1518.001][T1124].

Next, it uses a .JSONIP extension, (e.g., IgtyXEQuCEvAM.JSONIP), to create a thirteen character globally unique identifier (GUID)—a 128-bit text string that Truebot uses to label and organize the data it collects [T1036].

After creating the GUID, Truebot compiles and enumerates running process data into either a base64 or unique hexadecimal encoded string [T1027.001]. Truebot's main goal is identifying the presence of security debugger tools. However, the presence of identified debugger tools does not change Truebot's execution process—the data is compiled into a base64 encoded string for tracking and defense evasion purposes [T1082][T1622].

Data Collection and Exfiltration

Following Truebot's enumeration of running processes and tools, the affected system's computer and domain name [T1082], [T1016], along with the newly generated GUID, are sent to a hard-coded URL in a POST request (as observed in the user-agent string). **Note:** A user-agent string is a customized

TLP:CLEAR

HTTP request that includes specific device information required for interaction with web content. In this instance, cyber threat actors can redirect victims to malicious domains and further establish a C2 connection.

The **POST** request functions as means for establishing a C2 connection for bi-lateral communication. With this established connection, Truebot uses a second obfuscated domain to receive additional payloads [T1105], self-replicate across the environment [T1570], and/or delete files used in its operations [T1070.004]. Truebot malware has the capability to download additional malicious modules [T1105], load shell code [T1620], and deploy various tools to stealthily navigate an infected network.

Associated Delivery Vectors and Tools

Truebot has been observed in association with the following delivery vectors and tools:

Raspberry Robin (Malware)

Raspberry Robin is a wormable malware with links to other malware families and various infection methods, including installation via USB drive [T1091].[5] Raspberry Robin has evolved into one of the largest malware distribution platforms and has been observed deploying Truebot, as well as other post-compromise payloads such as IcedID and Bumblebee malware.[6] With the recent shift in Truebot delivery methods from malicious emails to the exploitation of CVE-2022-31199, a large number of Raspberry Robin infections have leveraged this exploitable CVE.[2]

Flawed Grace (Malware)

FlawedGrace is a remote access tool (RAT) that can receive incoming commands [T1059] from a C2 server sent over a custom binary protocol [T1095] using port 443 to deploy additional tools [T1105].[7] Truebot malware has been observed leveraging (and dropping) FlawedGrace via phishing campaigns as an additional payload [T1566.002].[8] **Note:** FlawedGrace is typically deployed minutes after Truebot malware is executed.

Cobalt Strike (Tool)

Cobalt Strike is a popular remote access tool (RAT) that cyber threat actors have leveraged—in an observable manner—for a variety of post-exploitation means. Typically a few hours after Truebot's execution phase, cyber threat actors have been observed deploying additional payloads containing Cobalt Strike beacons for persistence and data exfiltration purposes [T1059].[2] Cyber threat actors use Cobalt Strike to move laterally via remote service session hijacking [T1563.001][T1563.002], collecting valid credentials through LSASS memory credential dumping, or creating local admin accounts to achieve pass the hash alternate authentication [T1003.001][T1550.002].

Teleport (Tool)

Cyber threat actors have been observed using a custom data exfiltration tool, which Talos has named "Teleport."[2] Teleport is known to evade detection during data exfiltration by using an encryption key hardcoded in the binary and a custom communication protocol [T1095] that encrypts data using advanced encryption standard (AES) and a hardcoded key [T1048][T1573.002]. Furthermore, to

TLP:CLEAR

maintain its stealth, Teleport limits the data it collects and syncs with outbound organizational data/network traffic [T1029][T1030].

Truebot Malware Indicators of Compromise (IOCs)

Truebot IOCs from May 31, 2023, contain IOCs from cyber threat actors conducting Truebot malspam campaigns. Information is derived from a trusted third party, they observed cyber threat actors from 193.3.19[.]173 (Russia) using a compromised local account to conduct phishing campaigns on May 23, 2023 and spread malware through: https[:]//snowboardspecs[.]com/nae9v, which then promptly redirects the user to: https://www.meditimespharma[.]com/gfghthq/, which a trusted third party has linked to other trending Truebot activity.

After redirecting to https://www.meditimespharma[.]com/gfghthq/, trusted third parties have observed, the cyber threat actors using Truebot to pivot to

https://corporacionhardsoft[.]com/images/2/Document_16654.exe, which is a domain associated with snowboardspecs[.]com, as well as malicious phishing campaigns in May 2023 and flagged my numerous security vendors, according to trusted third party reporting. **Note:** these IOCs are associated with Truebot campaigns used by Graceful Spider to deliver FlawedGrace and LummaStealer payloads in May of 2023.

The malicious file MD5 hash, 6164e9d297d29aa8682971259da06848 is associated with multiple Truebot rooted attack vectors and malware families, and was downloaded from https://corporacionhardsoft.com/images/2/Document_16654[.]exe which was flagged as malicious by numerous security vendors, and during its execution, the malware copies itself to C:\Intel\RuntimeBroker.exe, and based on trusted third party analysis, is linked to https://essadonio.com/538332[.]php, which is linked to 45.182.189[.]71 (Panama) and is associated with other trending Truebot malware campaigns from May 2023.

Please reference table 1 for IOCs described in the paragraph above.

TLP:CLEAR

Table 1: Truebot IOCs from May of 2023			
Indicator Type	Indicator	Source	
Registrant	GKG[.]NET Domain Proxy Service Administrator	Trusted Third Party	
Compromised Account Created:	2022-04-10	Trusted Third Party	
Malicious account created	1999-11-09	Trusted Third Party	
IP	193.3.19[.]173 (Russia)	Trusted Third Party	
URL	https://snowboardspecs[.]com/nae9v	Trusted Third Party	
Domain	https://corporacionhardsoft[.]com/images/2/Document_16654.exe	Trusted Third Party	
File	Document_16654[.]exe	Trusted Third Party	
MD5 Hash	6164e9d297d29aa8682971259da06848	Trusted Third Party	
File	Document_may_24_16654[.]exe	Trusted Third Party	
File	C:\Intel\RuntimeBroker[.]exe	Trusted Third Party	
URL	https://essadonio.com/538332[.]php	Trusted Third Party	
IP	45.182.189[.]71 (Panama)	Trusted Third Party	
Account Created	2023-05-18	Trusted Third Party	

Indicator

TLP:CLEAR

Indicator Type

Table 2: Truebot malware IOCs from May of 2023 Source 1.11. 1/11. 16 . . 100001001401

URL	Secretsdump[.]py#l374	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
Domain	Secretsdump[.]py	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
Domain	Imsagentes[.]pe	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
URL	https://imsagentes[.]pe/dgrjfj/	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
URL	https://imsagentes[.]pe/dgrjfj	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
URL	https://hrcbishtek[.]com/{5	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
URL	https://ecorfan.org/base/sj/document_may_ 24_16654[.]exe	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
Domain	Hrcbishtek[.]com	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	F33734DFBBFF29F68BCDE052E523C287	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	F176BA63B4D68E576B5BA345BEC2C7B7	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	F14F2862EE2DF5D0F63A88B60C8EEE56	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
Domain	Essadonio[.]com	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
Domain	Ecorfan[.]org	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	C92C158D7C37FEA795114FA6491FE5F1 45AD2F8C08776B18AE79DB811E8E36A3	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/

CISA | FBI | MS-ISAC | CCCS

Domain	Atexec[.]py	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	A0E9F5D64349FB13191BC781F81F42E1	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	92.118.36[.]199	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	81.19.135[.]30	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	72A589DA586844D7F0818CE684948EEA	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	717BEEDCD2431785A0F59D194E47970E 9544FBF398D462A305F6AD9A1B1100CB	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	5.188.86[.]18	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	5.188.206[.]78	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	45.182.189[.]71	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
IPv4	139.60.160[.]166	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/
File	121A1F64FFF22C4BFCEF3F11A23956ED 403CDEB9BDB803F9C42763087BD6D94E	https://thedfirreport.com/2023/06/12/a- truly-graceful-wipe-out/

TLP:CLEAR

Table 3: Truebot IOCs from May 2023 (Malicious Domains, and Associated IP addresses and URLs)			
Malicious Domain	Associated IP(s)	Beacon URL	
nitutdra[.]com	46.161.40[.]128		
romidonionhhgtt[.]com	46.161.40.128		
midnigthwaall[.]com	46.161.40[.]128		
dragonetzone[.]com	46.161.40[.]128	hxxps://dragonetzone[.]com/gate_info[.]php	
rprotecruuio[.]com	45.182.189[.]71		
essadonio[.]com	45.182.189[.]71	hxxps://nomoresense[.]com/checkinfo[.]php	
nomoresense[.]com	45.182.189[.]91	hxxps://nomoresense[.]com/checkinfo[.]php	
ronoliffuion[.]com	45.182.189[.]120	hxxps://ronoliffuion[.]com/dns[.]php	
bluespiredice[.]com	45.182.189[.]119		
dremmfyttrred[.]com	45.182.189[.]103	hxxps://dremmfyttrred[.]com/dns[.]php	
ms-online-store[.]com	45.227.253[.]102		
ber6vjyb[.]com	92.118.36[.]252	hxxps://ber6vjyb[.]com/dns[.]php	
jirostrogud[.]com	88.214.27[.]101	hxxps://ber6vjyb[.]com/dns[.]php	
fuanshizmo[.]com	45.182.189[.]229		
qweastradoc[.]com	92.118.36[.]213	hxxp://nefosferta[.]com/gate[.]php	
qweastradoc[.]com	92.118.36[.]213	hxxp://nefosferta[.]com/gate[.]php	
qweastradoc[.]com	92.118.36[.]213	hxxp://nefosferta[.]com/gate[.]php	
hiperfdhaus[.]com	88.214.27[.]100	hxxp://nefosferta[.]com/gate[.]php	
guerdofest[.]com	45.182.189[.]228	hxxp://qweastradoc[.]com/gate[.]php	
nefosferta[.]com	179.60.150[.]139	hxxp://nefosferta[.]com/gate[.]php	

TLP:CLEAR

Table 4:	Table 4: Truebot IOCs from May 2023 Continued (Malicious Domains and Associated Hashes)			
Malicious Domain	MD5	SHA1	SHA256	
nitutdra[.]co m				
romidonion hhgtt[.]com				
midnigthwa all[.]com				
dragonetzo	64b27d2a6a5576850	c69f080180430ebf15f984	e0178ab0893a4f25c68ded11e74ad90403	
ne[.]com	6a5658a31c045de	be14fb4c76471cd476	443e413413501d138e0b08a910471e	
rprotecruui o[.]com				
essadonio[.	9a3bad7d851621669	a89c097138e5aab1f35b9	4862618fcf15ba4ad15df35a8dcb0bdb796	
]com	5887acc9668cda1	a03900600057d907690	47b455fea6c6937c7d050815494b0	
essadonio[.	6164e9d297d29aa86	96b95edc1a917912a3181	717beedcd2431785a0f59d194e47970e95	
]com	82971259da06848	d5105fd5bfad1344de0	44fbf398d462a305f6ad9a1b1100cb	
nomoresen	8f924f3cbe5d8fe3ec	516051b4cab1be74d32a6	6b646641c823414c2ee30ae8b91be3421	
se[.]com	b7293478901f1a	c446eabac7fc354904f	e4f13fa98e2d99272956e61eecfc5a1	
nomoresen	ac6a2f1eafaae9f659	1c637c2ded5d3a13fd9b5	f9f649cb5de27f720d58aa44aec6d0419e3	
se[.]com	8390d1017dd76c	6c35acf4443f308be52	e89f453730e155067506ad3ece638	
ronoliffuion[881485ac77859cf5a	51be660a3bdaab6843676	36d89f0455c95f9b00a8cea843003d0b53	
.]com	aa8e0d64fbafc5f	e9d3b2af8444e88bbda	c4e33431fe57b5e6ec14a6c2e00e99	
bluespiredi ce[.]com				
dremmfyttrr	e4a42cbda39a20134	afda13d5365b290f7cdea7	47f962063b42de277cd8d22550ae47b178	
ed[.]com	d6edcf9f03c44ed	01d00d05b0c60916f8	7a39aa6f537c5408a59b5b76ed0464	
dremmfyttrr	aa949d1a7ebe5f878	06057d773ad04fda177f6b	594ade1fb42e93e64afc96f13824b3dbd94	
ed[.]com	023c6cfb446e29b	0f6698ddaa47f7168a	2a2cdbc877a7006c248a38425bbc1	
dremmfyttrr	338476c2b0de4ee2f	03916123864aa034f7ca3	a67df0a8b32bdc5f9d224db118b3153f665	
ed[.]com	3e402f3495d0578	b9d45b2e39b5c91c502	18737e702314873b673c914b2bb5c	

ms-online- store[.]com			
ber6vjyb[.]c	46fe07c07fd0f45ba4	b918f97c7c6ebc9594de3	c0f8aeeb2d11c6e751ee87c40ee609aceb
om	5240ef9aae2a44	c8f2d9d75ecc292d02b	1c1036706a5af0d3d78738b6cc4125
jirostrogud[.	89c8afc5bbd34f160d	16ecf30ff8c7887037a17a	5cc8c9f2c9cee543ebac306951e30e63eff
]com	8a2b7218b9ca4a	3eaffcb17145b69160	3ee103c62dadcd2ce43ef68bc7487
jirostrogud[.	5da364a8efab6370a	792623e143ddd49c36f68	80b9c5ec798e7bbd71bbdfffab11653f36a
]com	174736705645a52	68e948febb0c9e19cd3	7a30e51de3a72c5213eafe65965d9
fuanshizmo [.]com			
qweastrado	ee1ccb6a0e38bf95e	62f5a16d1ef20064dd78f5	0e3a14638456f4451fe8d76fdc04e591fba
c[.]com	44b73c3c46268c5	d934c84d474aca8bbe	942c2f16da31857ca66293a58a4c3
qweastrado	82d4025b84cf569ec	bb32c940f9ca06e7e8533	c042ad2947caf4449295a51f9d640d722b
c[.]com	82d21918d641540	b1d315545c3294ee1a0	5a6ec6957523ebf68cddb87ef3545c
qweastrado	dbecfe9d5421d3195	9e7a2464f53ce74d840eb	c9b874d54c18e895face055eeb6faa2da7
c[.]com	34e0bfa5a6ac162	84077472bc29fd1ba05	965a336d70303d0bd6047bec27a29d
qweastrado	b7fed593e8eb3646f8	44090a7858eceb28bc111	ff8c8c8bfba5f2ba2f8003255949678df209
c[.]com	76367b56725e6c	e1edd2f0dc98047afb2	dbff95e16f2f3c338cfa0fd1b885
hiperfdhaus	8e2b823aac6c9e11f	77ad34334a370d85ca5e7	a30e1f87b78d1cd529fbe2afdd679c8241d
[.]com	cabecb1d8c19adf	7436ed99f18b185eee3	3baab175b2f083740263911a85304
hiperfdhaus	8a94163ddf956abd0	abc96032071adeb6217f0	b95a764820e918f42b664f3c9a96141e2d
[.]com	ea92d89db0034e5	a5ba1aff55dc11f5438	7d7d228da0edf151617fabdd9166cf
guerdofest[65fb9572171b903aa	d8bd44b7a8f136e29b312	d5bbcaa0c3eeea17f12a5cc3dbcaffff423d
.]com	31a325f550d8778	26f4edf566a4223266c	00562acb694561841bcfe984a3b7
nefosferta[.	d9d85bdb6a3ac60a8	78e38e522b1765efb15d0	092910024190a2521f21658be849c4ac9a
]com	ba6776c661dbace	585e13c1f1301e90788	e6fa4d5f2ecd44c9055cc353a26875
nefosferta[.	20643549f19bed9a6	c8227dcc1cd6ecc684de8	1ef8cdbd3773bd82e5be25d4ba61e5e593
]com	853810262622755	c5ea9b16e3b35f613f1	71c6331726842107c0f1eb7d4d1f49
nefosferta[.	e9299fc9b7daa0742	77360abc473dc65c8bdd7	22e3f4602a258e92a0b8deb5a2bd69c67f
]com	c28bfc4b03b7b25	3b6459b9ea8fddb6f1d	4ac3ca67362a745178848a9da7a3cc
nefosferta[.	775fb391db27e299af	eaaa5e68956a3a3f6113e	2d50b03a92445ba53ae147d0b97c49485
]com	08933917a3acda	965199f479e10ae9956	8c86a56fe037c44bc0edabb902420f7

TLP:CLEAR

nefosferta[.	f4045710c99d347fe6	b7bffdbbaf817d149bbd06	32ae88cddeeeec255d6d9c827f6bffc7a95
]com	dfa2c0fcadde29	1070a2d171449afbfc	e9ea7b83a84a79ff793735a4b4ed7
nefosferta[.	587acecdb9491e089	a9eb1ac4b85d17da3a2ba	55d1480cd023b74f10692c689b56e7fd6cc
]com	7d1067eb02e7c8d	e5835c7e862d481c189	8139fb6322762181daead55a62b9e
nefosferta[.	0bae65245e5423147	f24232330e6f428bfbb6b9	6210a9f5a5e1dc27e68ecd61c092d26676
]com	fce079de29b6136	d8154db1c4046c2fc2	09e318a95b5dade3c28f5634a89727
nefosferta[.	5022a85b39a75ebe2	a9040ac0e9f482454e040	68a86858b4638b43d63e8e2aaec15a9eb
]com	bc0411d7b058b2e	e2a7d874ddc50e6f6ce	d8fc14d460dd74463db42e59c4c6f89
nefosferta[.	6a2f114a8995dbeb9	edac3cf9533b6f7102f632	72813522a065e106ac10aa96e835c47aa
]com	1f766ac2390086e	4fadb437a0814cc680	9f34e981db20fa46a8f36c4543bb85d
nefosferta[.	e9115cc3280c16f90	dad01b0c745649c6c8b87	7a64bc69b60e3cd3fd00d4424b41139446
]com	19e0054e059f4b8	dbeb7ab549ed039515d	5640f499e56563447fe70579ccdd00
nefosferta[.	b54cc9a3dd88e478e	318fdfec4575d1530a41c8	7c607eca4005ba6415e09135ef38033bb0
]com	a601dfd5b36805e	0274aa8caae7b7f631	b0e0ff3e46d60253fc420af7519347
nefosferta[.	f129c12b1bda7426f6	5bb804153029c97fe2351	7c79ec3f5c1a280ffdf19d0000b4bfe458a3
]com	b31682b42ee4b0	7ae5428a591c3c63f28	b9380c152c1e130a89de3fe04b63
nefosferta[.	f68aa4c92dd30bd54	aa56f43e39d114235a6b1	7e39dcd15307e7de862b9b42bf556f2836
]com	18f136aaf6c07d6	d5f66b593cc80325fa4	bf7916faab0604a052c82c19e306ca
nefosferta[.	acac995cee8a6a75f	971a00a392b99f64a3886f	97bae3587f1d2fd35f24eb214b9dd6eed95
]com	a79eb41bdffa53f	40b6ef991e62f0fe2f	744bed62468d998c7ef55ff8726d4
nefosferta[.	36057710279d9f0d0	e4dd1f8fc4e44c8fd0e252	97d0844ce9928e32b11706e06bf2c44262
]com	23cb5613aa76d5e	42d994c4b59eed6939	04d998cb39964dd3c3de6c5223fff0
nefosferta[.	37e6904d84153d143	1dcd85f7364ea06cd595a	bf3c7f0ba324c96c9a9bff6cf21650a4b78e
]com	5407f4669135134	86e3e9be48995d596e9	dbc0076c68a9a125ebcba0e523c9
nefosferta[.	4f3916e7714f2a3240	87a692e3592f7b997c7d9	c3743a8c944f5c9b17528418bf49b153b9
]com	2c9d0b328a2c91	62919e243b665f2be36	78946838f56e5fca0a3f6914bee887
nefosferta[.	d9daaa0df32b0bb01	f9cb839adba612db5884e	c3b3640ddf53b26f4ebd4eedf929540edb4
]com	a09e500fc7f5881	1378474996b4436c0cd	52c413ca54d0d21cc405c7263f490
nefosferta[.	c87fb9b9f6c343670b	f05cf0b026b2716927dac8	c6c4f690f0d15b96034b4258bdfaf797432
]com	ed605420583418	bcd26a2719ea328964	a3ec4f73fbc920384d27903143cb0
nefosferta[.	2be64efd0fa7739123	318fdfec4575d1530a41c8	ed38c454575879c2546e5fccace0b16a70
]com	b26e4b70e53c5c	0274aa8caae7b7f631	1c403dfe3c3833730d23b32e41f2fe

TLP:CLEAR

CISA | FBI | MS-ISAC | CCCS

	Table 5: Truebot IOCs Connected to Russia, and Panama Locations			
Malicious Domain	IP Addresses	Files	SHA256	
Dremmfyttrred[.]com				
	45.182.189[.]1 03			
	94.142.138[.]6 1			
	172.64.155[.]1 88			
	104.18.32[.]68			
		Update[.]exe		
		Document_26_apr_24438 07[.]exe		
		3ujwy2rz7v[.]exe		
			fe746402c74ac329231ae1b5dffa8229b5 09f4c15a0f5085617f14f0c1579040	
droogggdhfhf[.]c om		3LXJyA6Gf[.]exe	7d75244449fb5c25d8f196a43a6eb9e45 3652b2185392376e7d44c21bd8431e7	

MITRE ATT&CK TACTICS AND TECHNIQUES

See Tables 6-16 for all referenced cyber threat actor tactics and techniques for enterprise environments in this advisory. For assistance with mapping malicious cyber activity to the MITRE ATT&CK framework, see CISA and MITRE ATT&CK's <u>Best Practices for MITRE ATT&CK Mapping</u> and CISA's <u>Decider Tool</u>.

Table 6: Initial Access			
Technique Title	ID	Use	
Replication Through Removable Media	<u>T1091</u>	Cyber threat actors use removable media drives to deploy Raspberry Robin malware.	
Drive-by Compromise	<u>T1189</u>	Cyber threat actors embed malicious links or attachments within web domains to gain initial access.	
Exploit Public-Facing Application	<u>T1190</u>	Cyber threat actors are exploiting Netwrix vulnerability CVE-2022-31199 for initial access with follow-on capabilities of lateral movement through remote code execution.	
Phishing	<u>T1566.002</u>	Truebot actors can send spear phishing links to gain initial access.	

Table 7: Execution			
Technique Title	ID	Use	
Command and Scripting Interpreter	<u>T1059</u>	Cyber threat actors have been observed dropping cobalt strike beacons as a reverse shell proxy to create persistence within the compromised network.	
		Cyber threat actors use FlawedGrace to receive PowerShell commands over a C2 channel to deploy additional tools.	
Shared Modules	<u>T1129</u>	Cyber threat actors can deploy malicious payloads through obfuscated share modules.	
User Execution: Malicious Link	<u>T1204.001</u>	Cyber threat actors trick users into clicking a link by making them believe they need to perform a Google Chrome software update.	

Table 8: Persistence			
Technique Title	ID	Use	
Hijack Execution Flow: DLL Side-Loading	<u>1574.002</u>	Cyber threat actors use Raspberry Robin, among other toolsets to side-load DLLs to maintain persistence.	

Table 9: Privilege Escalation			
Technique Title	ID	Use	
Boot or Logon Autostart Execution: Print Processors	<u>T1547.012</u>	FlawedGrace malware manipulates print spooler functions to achieve privilege escalation.	

Table 10: Defense Evasion		
Technique Title	ID	Use
Obfuscated Files or Information	<u>T1027</u>	Truebot uses a .JSONIP extension (e.g., IgtyXEQuCEvAM.JSONIP), to create a GUID.
Obfuscated Files or Information: Binary Padding	<u>T1027.001</u>	Cyber threat actors embed around one gigabyte of junk code within the malware string to evade detection protocols.
Masquerading: Masquerade File Type	<u>T1036.008</u>	Cyber threat actors hide Truebot malware as legitimate appearing file formats.
Process Injection	<u>T1055</u>	Truebot malware has the ability to load shell code after establishing a C2 connection.
Indicator Removal: File Deletion	<u>T1070.004</u>	Truebot malware implements self-deletion TTPs throughout its attack cycle to evade detection. Teleport exfiltration tool deletes itself after it has
		completed exfiltrating data to the C2 station.

Modify Registry	<u>T1112</u>	FlawedGrace is able to modify registry programs that control the order that documents are loaded to a print que.
Reflective Code Loading	<u>T1620</u>	Truebot malware has the capability to load shell code and deploy various tools to stealthily navigate an infected network.

Table 11: Credential Access		
Technique Title	ID	Use
OS Credential Dumping: LSASS Memory	<u>T1003.001</u>	Cyber threat actors use cobalt strike to gain valid credentials through LSASS memory dumping.

Table 12: Discovery		
Technique Title	ID	Use
System Network Configuration Discovery	<u>T1016</u>	Truebot malware scans and enumerates the affected system's domain names.
Process Discovery	<u>T1057</u>	Truebot malware enumerates all running processes on the local host.
System Information Discovery	<u>T1082</u>	Truebot malware scans and enumerates the OS version information, and processor architecture. Truebot malware enumerates the affected system's computer names.
System Time Discovery	<u>T1124</u>	Truebot has the ability to discover system time metrics, which aids in enables synchronization with the compromised system's internal clock to facilitate scheduling tasks.

Software Discovery: Security Software Discovery	<u>T1518.001</u>	Truebot has the ability to discover software security protocols, which aids in defense evasion.
Debugger Evasion	<u>T1622</u>	Truebot malware scans the compromised environment for debugger tools and enumerates them in effort to evade network defenses.

Table 13: Lateral Movement		
Technique Title	ID	Use
Exploitation of Remote Services	<u>T1210</u>	Cyber threat actors exploit CVE-2022-31199 Netwrix Auditor vulnerability and use its capabilities to move laterally within a compromised network.
Use Alternate Authentication Material: Pass the Hash	<u>T1550.002</u>	Cyber threat actors use cobalt strike to authenticate valid accounts
Remote Service Session Hijacking	<u>T1563.001</u>	Cyber threat actors use cobalt strike to hijack remote sessions using SSH and RDP hijacking methods.
Remote Service Session Hijacking: RDP Hijacking	<u>T1563.002</u>	Cyber threat actors use cobalt strike to hijack remote sessions using SSH and RDP hijacking methods.
Lateral Tool Transfer	<u>T1570</u>	Cyber threat actors deploy additional payloads to transfer toolsets and move laterally.

Table 14: Collection		
Technique Title ID Use		Use
Data from Local System	<u>T1005</u>	Truebot malware checks the current version of the OS and the processor architecture and compiles the information it receives.

		Truebot gathers and compiles compromised system's host and domain names.
Screen Capture	<u>T1113</u>	Truebot malware takes snapshots of local host data, specifically processor architecture data, and sends that to a phase 2 encoded data string.

Table 15: Command and Control		
Technique Title	D	Use
Application Layer Protocol	<u>T1071</u>	Cyber threat actors use teleport exfiltration tool to blend exfiltrated data with network traffic.
Non-Application Protocol	<u>T1095</u>	Cyber threat actors use Teleport and FlawedGrace to send data over custom communication protocol.
Ingress Transfer Tool	<u>T1105</u>	Cyber threat actors deploy various ingress transfer tool payloads to move laterally and establish C2 connections.
Encrypted Channel: Asymmetric Cryptography	<u>T1573.002</u>	Cyber threat actors use Teleport to create an encrypted channel using AES.

Table 16: Exfiltration		
Technique Title	ID	Use
Scheduled Transfer	<u>T1029</u>	Teleport limits the data it collects and syncs with outbound organizational data/network traffic.
Data Transfer Size Limits	<u>T1030</u>	Teleport limits the data it collects and syncs with outbound organizational data/network traffic.
Exfiltration Over C2 Channel	<u>T1048</u>	Cyber threat actors blend exfiltrated data with network traffic to evade detection.

TLP:CLEAR

	Cyber threat actors use the Teleport tool to
	exfiltrate data over a C2 protocol.

DETECTION METHODS

CISA and authoring organizations recommend that organizations review and implement the following detection signatures, along with: Win/malicious_confidence100% (W), Trojan:Win32/Tnega!MSR, and Trojan.Agent.Truebot.Gen, as well as YARA rules below to help

detect Truebot malware.

Detection Signatures

Figure 2: Snort Signature to Detect Truebot Malware

```
alert tcp any any -> any any (msg:"TRUEBOT: Client HTTP Header"; sid:x; rev:1;
flow:established,to_server; content:"Mozilla/112.0 (compatible|3b 20 4d 53 49 45
20 31 31 2e 30 3b 20 57 69 6e 64 6f 77 73 20 4e 54 20 31 30 2e 30 30 29|";
http_header; nocase; classtype:http-header; metadata:service http;)
```

YARA Rules

CISA developed the following YARA to aid in detecting the presence of Truebot Malware.

Figure 3: YARA Rule for Detecting Truebot Malware

```
rule CISA_10445155_01 : TRUEBOT downloader
{
meta:
Author = "CISA Code & Media Analysis"
Incident = "10445155"
Date = "2023-05-17"
Last_Modified = "20230523_1500"
Actor = "n/a"
Family = "TRUEBOT"
Capabilities = "n/a"
Malware_Type = "downloader"
Tool_Type = "n/a"
```

TLP:CLEAR

CISA | FBI | MS-ISAC | CCCS

```
Description = "Detects TRUEBOT downloader samples"

SHA256 = "7d75244449fb5c25d8f196a43a6eb9e453652b2185392376e7d44c21bd8431e7"

strings:

$s1 = { 64 72 65 6d 6d 66 79 74 74 72 72 65 64 2e 63 6f 6d }

$s2 = { 4e 73 75 32 4f 64 69 77 6f 64 4f 73 32 }

$s3 = { 59 69 50 75 6d 79 62 6f 73 61 57 69 57 65 78 79 }

$s4 = { 72 65 70 6f 74 73 5f 65 72 72 6f 72 2e 74 78 74 }

$s5 = { 4c 6b 6a 64 73 6c 66 6a 33 32 6f 69 6a 72 66 65 77 67 77 2e 6d 70 34 }

$s6 = { 54 00 72 00 69 00 67 00 67 00 65 00 72 00 31 00 32 }

$s7 = { 54 00 55 00 72 00 66 00 57 00 65 00 73 00 54 00 69 00 66 00 73 00 66 }

condition:

5 of them

}
```

• Additional YARA rules for detecting Truebot malware can be referenced from GitHub.[9]

INCIDENT RESPONSE

The following steps are recommended if organizations detect a Truebot malware infection and compromise:

- 1. Quarantine or take offline potentially affected hosts.
- 2. Collect and review artifacts such as running processes/services, unusual authentications, and recent network connections.
- 3. Provision new account credentials.
- 4. Reimage compromised host.
- Report the compromise to CISA via CISA's 24/7 Operations Center (<u>report@cisa.gov</u> or 888-282-0870) or contact your local FBI <u>field office</u>. State, local, tribal, or territorial government entities can also report to MS-ISAC (<u>SOC@cisecurity.org</u> or 866-787-4722).

MITIGATIONS

CISA and the authoring organizations recommend organizations implement the below mitigations, including mandating <u>phishing-resistant multifactor authentication</u> (MFA) for all staff and services.

For additional best practices, see CISA's <u>Cross-Sector Cybersecurity Performance Goals</u> (CPGs). The CPGs, developed by CISA and the National Institute of Standards and Technology (NIST), are a prioritized subset of IT and OT security practices that can meaningfully reduce the likelihood and impact of known cyber risks and common TTPs. Because the CPGs are a subset of best practices, CISA and co-sealers recommend software manufacturers implement a comprehensive information

security program based on a recognized framework, such as the NIST <u>Cybersecurity Framework</u> (CSF).

- Apply patches to CVE-2022-31199
- Update Netwrix Auditor to version 10.5

Reduce threat of malicious actors using remote access tools by:

- Implementing application controls to manage and control execution of software, including allowlisting remote access programs.
 - Application controls should prevent installation and execution of portable versions of unauthorized remote access and other software. A properly configured application allowlisting solution will block any unlisted application execution. Allowlisting is important because antivirus solutions may fail to detect the execution of malicious portable executables when the files use any combination of compression, encryption, or obfuscation.

See the National Security Agency's Cybersecurity Information sheet, <u>Enforce Signed Software</u> <u>Execution Policies</u>, and additional guidance below:

- Strictly limit the use of RDP and other remote desktop services. If RDP is necessary, rigorously apply best practices, for example [CPG 2.W]:
 - \circ $\;$ Audit the network for systems using RDP.
 - Close unused RDP ports.
 - Enforce account lockouts after a specified number of attempts.
 - o Apply phishing-resistant multifactor authentication (MFA).
 - Log RDP login attempts.
- Disable command-line and scripting activities and permissions [CPG 2.N].
- **Restrict the use of PowerShell** by using Group Policy, and only grant to specific users on a case-by-case basis. Typically, only those users or administrators who manage the network or Windows operating systems (OSs) should be permitted to use PowerShell [CPG 2.E].
- Update Windows PowerShell or PowerShell Core to the latest version and uninstall all earlier PowerShell versions. Logs from Windows PowerShell prior to version 5.0 are either non-existent or do not record enough detail to aid in enterprise monitoring and incident response activities [CPG 1.E, 2.S, 2.T].
- Enable enhanced PowerShell logging [CPG 2.T, 2.U].
 - PowerShell logs contain valuable data, including historical OS and registry interaction and possible IOCs of a cyber threat actor's PowerShell use.
 - Ensure PowerShell instances, using the latest version, have module, script block, and transcription logging enabled (enhanced logging).
 - The two logs that record PowerShell activity are the PowerShell Windows Event Log and the PowerShell Operational Log. The authoring organizations recommend turning on these two Windows Event Logs with a retention period of at least 180 days. These logs should be checked on a regular basis to confirm whether the log data has been deleted or logging has been turned off. Set the storage size permitted for both logs to as large as possible.

TLP:CLEAR

- Configure the Windows Registry to require User Account Control (UAC) approval for any PsExec operations requiring administrator privileges to reduce the risk of lateral movement by PsExec.
- **Review domain controllers, servers, workstations, and active directories** for new and/or unrecognized accounts [CPG 4.C].
- Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege (PoLP) [CPG 2.E].
- Reduce the threat of credential compromise via the following:
 - Place domain admin accounts in the protected users' group to prevent caching of password hashes locally.
 - Implement Credential Guard for Windows 10 and Server 2016 (Refer to Microsoft: Manage Windows Defender Credential Guard for more information). For Windows Server 2012R2, enable Protected Process Light for Local Security Authority (LSA).
 - Refrain from storing plaintext credentials in scripts.
- Implement time-based access for accounts set at the admin level and higher [CPG 2.A, 2.E]. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory (AD) level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task.

In addition, CISA, FBI, MS-ISAC, and CCCS recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the impact and risk of compromise by ransomware or data extortion actors:

- **Disable File and Printer sharing services**. If these services are required, use strong passwords or Active Directory authentication.
- **Implement a recovery plan** to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (e.g., hard drive, storage device, or the cloud).
- **Maintain offline backups of data** and regularly maintain backup and restoration (daily or weekly at minimum). By instituting this practice, an organization minimizes the impact of disruption to business practices as they can retrieve their data [CPG 2.R].
- Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with <u>National Institute for Standards and Technology</u> (<u>NIST) standards</u> for developing and managing password policies.
 - Use longer passwords consisting of at least 15 characters [CPG 2.B].
 - $_{\odot}$ Store passwords in hashed format using industry-recognized password managers.
 - Add password user "salts" to shared login credentials.
 - Avoid reusing passwords [CPG 2.C].
 - Implement multiple failed login attempt account lockouts [CPG 2.G].

- o Disable password "hints."
- Refrain from requiring password changes more frequently than once per year.
 Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password "patterns" cyber criminals can easily decipher.
- \circ $\;$ Require administrator credentials to install software.
- **Require phishing-resistant multifactor authentication** for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems [CPG 2.H].
- Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Organizations should patch vulnerable software and hardware systems within 24 to 48 hours of vulnerability disclosure. Prioritize patching <u>known exploited</u> <u>vulnerabilities</u> in internet-facing systems [CPG 1.E].
- **Segment networks** to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to various subnetworks, restricting further lateral movement [CPG 2.F].
- Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections, as they have insight into common and uncommon network connections for each host [CPG 3.A].
- Install, regularly update, and enable real time detection for antivirus software on all hosts.
- Disable unused ports [CPG 2.V].
- **Consider adding an email banner to emails** received from outside your organization [CPG 2.M].
- Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization's data infrastructure [CPG 2.K, 2.L, 2.R].

VALIDATE SECURITY CONTROLS

In addition to applying mitigations, CISA recommends exercising, testing, and validating your organization's security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. CISA recommends testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.

To get started:

- 1. Select an ATT&CK technique described in this advisory (see Tables <u>5-13</u>).
- 2. Align your security technologies against the technique.
- 3. Test your technologies against the technique.
- 4. Analyze your detection and prevention technologies' performance.

TLP:CLEAR

- 5. Repeat the process for all security technologies to obtain a set of comprehensive performance data.
- 6. Tune your security program, including people, processes, and technologies, based on the data generated by this process.

CISA recommends continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.

RESOURCES

- <u>NIST: NVD CVE-2022-31199</u>
- <u>Stopransomware.gov</u> (A whole-of-government approach with one central location for U.S. ransomware resources and alerts.)
- <u>#StopRansomware Guide</u>
- <u>CISA: Implement Phishing-Resistant MFA</u>
- <u>CISA: Guide to Securing Remote Access Software</u>
- <u>CISA and MS-ISAC: Joint Ransomware Guide</u>
- <u>CISA: Cross-Sector Cybersecurity Performance Goals</u>
- <u>CLOP Ransomware Uses Truebot Malware for Access to Networks</u>
- Field Offices FBI
- <u>NSA Zero Trust Security Model</u>

REFERENCES

- [1] Bishop Fox: Netwrix Auditor Advisory
- [2] Talos Intelligence: Breaking the Silence Recent Truebot Activity
- [3] The DFIR Report: Truebot Deploys Cobalt Strike and FlawedGrace
- [4] MAR-10445155-1.v1 .CLEAR Truebot Activity Infects U.S. and Canada Based Networks
- [5] Red Canary: Raspberry Robin Delivery Vector
- [6] Microsoft: Raspberry Robin Worm Part of a Larger Ecosystem Pre-Ransomware Activity
- [7] Telsy: FlawedGrace RAT
- [8] VMware Security Blog: Carbon Black's Truebot Detection
- [9] GitHub: DFIR Report Truebot Malware YARA Rule

Additional Sources

<u>Alarming Surge in TrueBot Activity Revealed with New Delivery Vectors (thehackernews.com)</u> <u>Truebot Analysis Part 1</u>

TLP:CLEAR

 Truebot Analysis Part 2

 Truebot Analysis Part 3

 Truebot Exploits Netwrix Vulnerability

 TrueBot malware delivery evolves, now infects businesses in the US and elsewhere

 Make dia Others Date delivery

Malpedia-Silence Downloader

Printer spooling: what is it and how to fix it? | PaperCut

ACKNOWLEDGEMENTS

VMware's Carbon Black contributed to this CSA.

DISCLAIMER

The information in this report is being provided "as is" for informational purposes only. CISA and authoring agencies do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA, and co-sealers.

