

Enduring Security Framework

October 2022

Securing the Software Supply Chain: Recommended Practices for Customers ii

Executive Summary
Cyberattacks are conducted via cyberspace and targets an enterprise's use of cyberspace for the
purpose of disrupting, disabling, destroying, or maliciously controlling a computing environment or
infrastructure; or destroying the integrity of the data or stealing controlled information.1

Recent cyberattacks such as those executed against SolarWinds and its customers, and exploits that
take advantage of vulnerabilities such as the Log4j, highlight weaknesses within software supply
chains; an issue which spans both commercial and open source software and impacts both private
and Government enterprises. Accordingly, there is an increased need for software supply chain
security awareness and cognizance regarding the potential for software supply chains to be
weaponized by nation state adversaries using similar tactics, techniques, and procedures (TTPs).

In response, the White House released an Executive Order on Improving the Nation's Cybersecurity
(EO 14028). EO 14028 establishes new requirements to secure the federal government's software
supply chain. These requirements involve systematic reviews, process improvements, and security
standards for both software suppliers and developers, in addition to customers who acquire
software for the Federal Government.

Similarly, the Enduring Security Framework2 (ESF) Software Supply Chain Working Panel has
established this guidance to serve as a compendium of suggested practices for developers,
suppliers, and customer stakeholders to help ensure a more secure software supply chain. This
guidance is organized into a three part series: Part 1 of the series focuses on software developers;
Part 2 focuses on software suppliers; and Part 3 focuses on software customers.

Customers (acquiring organizations) may use this guidance as a basis of describing, assessing, and
measuring security practices relative to the software lifecycle. Additionally, suggested practices
listed herein may be applied across the acquisition, deployment, and operational phases of a
software supply chain.

The software supplier (vendor) is responsible for liaising between the customer and software
developer. Accordingly, vendor responsibilities include ensuring the integrity and security of
software via contractual agreements, software releases and updates, notifications, and mitigations
of vulnerabilities. This guidance contains recommended best practices and standards to aid
suppliers in these tasks.

This document will provide guidance in line with industry best practices and principles which
software developers are strongly encouraged to reference. These principles include security
requirements planning, designing software architecture from a security perspective, adding
security features and maintaining the security of software and the underlying infrastructure (e.g.,
environments, source code review, testing).

1 Committee on National Security Systems (CNSS)

2 The ESF is a cross-sector working group that operates under the auspices of Critical Infrastructure Partnership
Advisory Council (CIPAC) to address threats and risks to the security and stability of U.S. national security systems.
It is comprised of experts from the U.S. government as well as representatives from the Information Technology,
Communications, and the Defense Industrial Base sectors. The ESF is charged with bringing together
representatives from private and public sectors to work on intelligence-driven, shared cybersecurity challenges.

Securing the Software Supply Chain: Recommended Practices for Customers iii

DISCLAIMER
DISCLAIMER OF ENDORSEMENT

This document was written for general informational purposes only. It is intended to apply to a
variety of factual circumstances and industry stakeholder, and the information provided herein is
advisory in nature. The guidance in this document is provided "as is." Once published, the
information within may not constitute the most up-to-date guidance or technical information.
Accordingly, the document does not, and is not intended to, constitute compliance or legal advice.
Readers should confer with their respective advisors and subject matter experts to obtain advice
based on their individual circumstances. In no event shall the United States Government be liable
for any damages arising in any way out of the use of or reliance on this guidance.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or
favoring by the United States Government, and this guidance shall not be used for advertising or
product endorsement purposes. All trademarks are the property of their respective owners.

PURPOSE

NSA, ODNI, and CISA developed this document in furtherance of their respective cybersecurity
missions, including their responsibilities to develop and issue cybersecurity recommendations and
mitigations. This information may be shared broadly to reach all appropriate stakeholders.

CONTACT

Client Requirements / Inquiries: Enduring Security Framework nsaesf@cyber.nsa.gov

Media Inquiries / Press Desk:

• NSA Media Relations, 443-634-0721, MediaRelations@nsa.gov
• CISA Media Relations, 703-235-2010, CISAMedia@cisa.dhs.gov
• ODNI Media Relations, dni-media@dni.gov

mailto:nsaesf@cyber.nsa.gov
mailto:MediaRelations@nsa.gov
mailto:CISAMedia@cisa.dhs.gov
mailto:dni-media@dni.gov

Securing the Software Supply Chain: Recommended Practices for Customers iv

Table of Contents

Executive Summary ... ii

Introduction ... 1

Background .. 1
Document Overview .. 2

Customer .. 3

Procurement and Acquisition ... 3
Requirements Definition ... 3

Product Evaluation .. 4

Contracts .. 6

Deployment .. 8
Acceptance of Product ... 8

Functional Testing ... 9

Assurance - Security Testing/Validation ... 9

Configuration Control Board Review ... 11

Integration .. 12

Roll-Out of Initial Product ... 13

Upgrade of Product .. 15

Product End-of-Life ... 16

Training/Enablement .. 18

Software operations .. 18
User 18

Updates 19

Security/Supply Chain Risk Management Operations .. 21

Appendices ... 23

Appendix A: Crosswalk between Scenarios and SSDF .. 23
Appendix B: Dependencies .. 25

Customer Group Dependencies .. 25

Developer Group Dependencies ... 26

Appendix C: Supply-Chain Levels for Software Artifacts (SLSA) ... 27
Appendix D: Informative References.. 29
Appendix E: Acronyms .. 34

Securing the Software Supply Chain: Recommended Practices for Customers 1

1 Introduction
Unmitigated vulnerabilities in the software supply chain pose a significant risk to organizations.
This series presents actionable recommendations for a software supply chain's development,
production and distribution, and management processes to increase the resiliency of these
processes against compromise.

All organizations have a responsibility to establish software supply chain security practices to
mitigate risks, but the organization's role in the software supply chain lifecycle determines the
shape and scope of this responsibility.

Because the considerations for securing the software supply chain vary based on the role an
organization plays in the software supply chain, this series presents recommendations geared
toward these important roles, namely, developers, suppliers, and customers (or the organization
acquiring a software product),

This guidance is organized into a three part series and will be released coinciding with the software
supply chain lifecycle. This is Part 3 of the series which focuses on the software customer. Part 1 of
the series focused on software developers and Part 2 focused on software suppliers. This series will
help foster communication between these three different roles and among cybersecurity
professionals that may facilitate increased resiliency and security in the software supply chain
process.

In this series, terms such as risk, threat, exploit, and vulnerability are based on descriptions defined
in the Committee on National Security Systems Glossary (CNSSI 4009).3

1.1 Background

Historically, software supply chain compromises largely targeted commonly known vulnerabilities
organizations that were left unpatched. While threat actors still use this tactic to compromise
unpatched systems, a new, less conspicuous method of compromise also threatens software supply
chains and undermines trust in the patching systems themselves that are critical to guarding
against legacy attacks. Rather than waiting for public vulnerability disclosures, threat actors
proactively inject malicious code into products that are then legitimately distributed downstream
through the global software supply chain. Over the last few years, these next-gen software supply
chain compromises have significantly increased for both open source and commercial software
products.

Technology consumers generally manage software downloads and broader, more traditional
software supply chain activities separately. Considering both the upstream and downstream phases
of software as a component of supply chain risk management may help to identify problems and
provide a better way forward in terms of integrating activities to achieve systemic security.
However, there are also some differences to account for in the case of software products. A
traditional software supply chain cycle is from point of origin to point of consumption and generally
enables a customer to return a malfunctioning product and confine any impact. In contrast, if a

3 CNSSI-4009.pdf

Securing the Software Supply Chain: Recommended Practices for Customers 2

software package is injected with malicious code which proliferates to multiple consumers; the
scale may be more difficult to confine and may cause an exponentially greater impact.

Common methods of compromise used against software supply chains include exploitation of
software design flaws, incorporation of vulnerable third-party components into a software product,
infiltration of the supplier's network with malicious code prior to the final software product being
delivered, and injection of malicious software that is then deployed by the customer.

Stakeholders must seek to mitigate security concerns specific to their area of responsibility.
However, other concerns may require a mitigation approach that dictates a dependency on another
stakeholder or a shared responsibility by multiple stakeholders. Dependencies that are
inadequately communicated or addressed may lead to vulnerabilities and the potential for
compromise.

Areas where these types of vulnerabilities may exist include:

• Undocumented features or high risk functionality,
• Unknown and/or revisions to contractual, functionality, or security assumptions between

evaluation and deployment,
• Supplier's change of ownership and/or of geolocation, and
• Poor supplier enterprise or development hygiene.

1.2 Document Overview

This document contains the following additional sections and appendices:

Section 2 describes recommended practices customers may apply across the acquisition,
deployment, and operational phases of a software supply chain.

Section 3 is a collection of appendices supplementing the preceding sections:

Appendix A: Crosswalk Between the NIST SP800-218; Mitigating the Risk of Software
Vulnerabilities by Adopting a Secure Software Development Framework (SSDF)4 and Use Cases
described herein

Appendix B: Dependencies

Appendix C: Supply-Chain Levels for Software Artifacts (SLSA)5

Appendix D: Informative References

Appendix E: Acronyms.

Each section contains examples of threat scenarios and recommended mitigations. Threat scenarios
explain how processes that compose a given phase of the software development lifecycle (SDLC)
relate to common vulnerabilities that could be exploited. The recommended mitigations present
controls and mitigations that could reduce the impact of the threats.

4 Draft NIST SP 800-218, Secure Software Development Framework (SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software Vulnerabilities
5 GitHub - slsa-framework/slsa: Supply-chain Levels for Software Artifacts

Securing the Software Supply Chain: Recommended Practices for Customers 3

2 Customer
A customer (i.e., organization) procuring and deploying a software product first defines
requirements for the product and then evaluates, acquires, deploys, and maintains the product.
Each of these phases comprises a series of processes which should be augmented or revised to
satisfy an organization's structure and mission.

This section covers key processes in the product acquisition, deployment, operations, and
maintenance phases of the software lifecycle, beginning with requirements definition and ending
with software supply chain risk management operations.

It is important that the customer augment these processes based on the organization's structure,
mission, and risk tolerance, as the organization implements specific mitigation activities.
Mitigations that require artifacts or action from suppliers or developers are highlighted in
Appendix B, Dependences.

2.1 Procurement and Acquisition

2.1.1 Requirements Definition

Requirements are the foundation of successful acquisitions. They are often categorized in ways
predefined by internal organizations or derived from external organizations.

Functional requirements may be derived from information provided by mission execution, the
enterprise, and organization-wide requirements. Non-functional requirements may include security
and supply chain risk management (SCRM) activities or those activities that involve conducting gap
analysis on existing solution inventories. Requirements based on defined risk profiles include
inputs from information assurance data that correlates threat, vulnerability, and mitigation
information; and from the Acquisition Security (ACQSEC) team, which should contain known risks
about foreign ownership, control, or influence (FOCI) for the supplier landscape.

The defined risk profile may also be derived from information collected by external organizations,
such as threat analytic groups. These groups provide information on known threats and risks. This
information is often obtained from the U.S. Government (USG) or from commercial Cyber Threat
Intelligence (CTI) providers.

Threat Scenarios

The following are example scenarios that could be exploited:

• Security requirements intended to counter threats are not domain specific or exclude
organizational requirements,

• Gaps in analysis of security requirements which may lead to a mismatch of the solution or
to selected security controls.

Other security requirement gaps include out-of-date security requirements or assessments and
misrepresented or underrepresented risk profiles that are disconnected from acquisitions or
mission areas. Insufficient security requirements may also be a problem when stakeholders are
missing from signoff or approval, or when solution inventory is incomplete.

Securing the Software Supply Chain: Recommended Practices for Customers 4

General security inadequacies may also prevail when a product isn't properly protected, when a
customer is associated with suspicious geolocation and metadata, or when a customer is suspected
to be associated with foreign interests.

Recommended mitigations

The following mitigations are recommended to help reduce vulnerabilities in the procurement and
acquisition phase:

1. Keep security requirements and risk assessments up-to-date using business processes and
require adequate protection and control of geolocation of all data and metadata.

2. Assign individual roles to:
a) Verify the domain-specific and organizational security requirements,
b) Coordinate risk profile definitions with mission and enterprise areas,
c) Verify completeness of the stakeholders-list and independently review solution

inventory, and
d) For acquisitions considered either large or significant for your organization, conduct a

gap analysis.
3. Additional controls for consideration include:

a) Security requirements for all acquisitions,
b) Original products, including any updates or upgrades, should have a hash or signature

that can be independently verified by the customer,
c) Developers and suppliers to provide the customer with guidance on how to verify the

integrity of the components.
4. When acquiring software through spin-offs, external entities, or third-party suppliers,

customers should:
a) Implement continuous monitoring of the entire SCRM calculation, and
b) Implement appropriate controls to mitigate changes to assumptions and security

risks, or threats in coordination with information technology (IT) security and
SCRM operations teams.

2.1.2 Product Evaluation

Product evaluation is imperative as it ensures the product complies with standards.6 It also
identifies product defects. The evaluation process, as shown in Figure 1, includes performing an
internal analysis of current market and supplier solutions. Next, input from a Request For
Information (RFI) or Request For Proposal (RFP) for solutions is solicited, after which that input
will be assessed to determine whether requirements that incorporate security and SCRM have been

6 A standard is an established norm or requirement for a repeatable task which is applied to a common and
repeated use of rules, conditions, guidelines or characteristics for products or related processes and
production methods, and related management systems practices.

Securing the Software Supply Chain: Recommended Practices for Customers 5

met. ACQSEC evaluation, source selection and down-selection processes, and lab trials for the
supplier and product selection are also part of the process.

Determine if requirements to
incorporate security and
SCRM have been met Source Selection and Down

Selection processes
Lab trials for the Supplier and
product selection are also part
of the process

Figure 1: Product Evaluation Process

Threat Scenario

Threat evaluation is crucial to assessing and managing risks associated with a specific product or
the software supply chain in general. The following scenarios have been identified in an effort to
illustrate potential threats that organizations may face during the product evaluation phase such as:

• The evaluated product is not the delivered product,

• Vulnerabilities, which were unknown at initial evaluation, are discovered later,

• It is determined that an evaluated product has had a change of ownership or control or that
evaluators lack the proper expertise to assess the software under evaluation,

• External influence on the product, selection of supplier, or external labs used for product
evaluations and trials, results in false or incomplete evaluation results,

• Unknown functionalities hidden within the product, which may be risky or vulnerable,
when under evaluation or testing,

• Limited or no visibility into product components or requirements; visibility is needed to
make informed decisions and the lack of visibility could lead to improper evaluations.
Examples of this include:

o Lack of visibility into embedded components, libraries, modules, add-ons, etc.,
o Lack of correct, up-to-date functional, environmental, and operational requirements,
o Lack of correct, up-to-date domain-specific & organizational security requirements

and risk assessments.

Recommended mitigations

To help counter potential vulnerabilities in the software product evaluation phase, the following
mitigations are recommended:

1. Verify the contents of the software bill of material (SBOM) against the product under
evaluation. This verification should include attributes such as geolocation, supplier

Securing the Software Supply Chain: Recommended Practices for Customers 6

ownership or control, Data Universal Numbering System (DUNS) verification, and past
performances.

2. Subject third-party suppliers identified in the SBOM to this same evaluation to help mitigate
associated risks.

3. Forge mitigations and outcome strategies as part of the SCRM determination by correlating
prior notifications of vulnerabilities in supplier products with incidents presently under
evaluation.

4. Continuously vet external evaluation labs and verify their independency. Require that
evaluators have proper expertise in the type of software under evaluation and require an
assigned function to verify that domain-specific and organizational security requirements
are in place. These assigned functions should also verify the functional, environmental, and
operational requirements.

2.1.3 Contracts

Customers should draft contractual agreements to enable improved software supply chain security
controls and mitigations. This section outlines suggested revisions to contractual processes,
identifies common threats in creating or implementing a secure software supply chain contractual
mechanism, and describes recommended controls to mitigate software supply chain risks.

Customers should implement processes to create and execute contractual mechanisms requiring
the appropriate level of controls for improved supply chain mitigations. Acquisition and contracts
organizations should add new software supply chain-related requirements to existing and new
contractual vehicles. Statements of Work (SOW) may include the software supply chain mitigations
like those described in this document. Further, acquisition and contracts organizations should
submit contractual artifacts to existing contractual review boards to gain necessary approvals. Once
the acquisition or contracts organization receives approval for the contractual language, they
should execute all resulting contracts including all necessary signatures.

Threat scenarios

The following list outlines scenarios that could yield potential software supply chain related threats
to the acquisition and contracts process and result in customers experiencing a higher risk of
disruption or compromise:

1. Initial execution of a contract agreement with a supplier who is under foreign control,
or when the supplier changes the sourcing of products or selects a subcontractor or
supplier that is under foreign control after execution.

2. Contract security requirements that are:
a) Incomplete (e.g., lacks strong cryptographic methods for verifying product

integrity), or
b) Contract lacks SCRM requirements, as recommenced in this guide. The contract

may also lack or have incomplete requirements to ensure the software supply
chain integrity and security for supplier or third-party supplier.

3. An SBOM (a key SCRM requirement that supports verification of an acquired product) is
missing entirely or lacks a means to ensure the integrity for the product.

Securing the Software Supply Chain: Recommended Practices for Customers 7

4. The supplier has poor security hygiene or has experienced a compromise or other

cybersecurity incident that affects the integrity of the product or the infrastructure that
supports its development, thereby enabling delivery of illegitimate products, hashes and
signatures.

5. The supplier alters or substitutes individual components included in the product
distribution prior to package signing and hashing.

Recommended mitigations

The following mitigations are recommended to help reduce software supply chain risks in the
acquisitions and contracts processes. Contracts should include terms that incorporate the following
areas such as:

1. Recommended security and SCRM requirements, and terms that include new Federal
Acquisition Regulation/Defense Federal Acquisition Regulation (FARS/DFARS) provisions
that require visibility into the provenance of each product delivered. Terms may include:

a. Specific security hygiene requirements for the developer and supplier as identified
in item 2 below, and

b. Requirements for suppliers to provide notification of updates and modifications to
functionality, vulnerabilities, and support from time of evaluation to time of
delivery.

2. Require suppliers' self-attestation of cybersecurity hygiene for their development process
and the infrastructure supporting the development of their product. Ideally, self-attestation
should include:

a. New FARS/DFARS provisions for self-attestation from each supplier who provides
products to USG customers,

b. A timeline or checklist of key steps that comprise the supplier's security processes
that were performed in the development of the product,

c. Signature by a supplier-designated official responsible for the security hygiene of
the development process and infrastructure,

d. Requirement for supplier to provide cryptographic security for hashing/signature
infrastructure of its product distribution system/method, and

e. Requirement to ensure greater software supply chain visibility into the sourcing and
ownership of products and suppliers.

3. Require the supplier to inform all customers on how to verify the integrity of all software
components through:

a. Verify component-level integrity by requiring the use of a hash or signature (can be
same key for signing the full distribution package) or similar method to ensure the
integrity of each component and require each supplier to inform the customer on
how to verify the integrity of the components,

b. Require that all artifacts sent by the supplier be in a standardized SBOM format

Securing the Software Supply Chain: Recommended Practices for Customers 8

c. Provide SBOMs for all upgrades,

d. Ensure newly issued SBOMs incorporate all changes to the product baseline,

e. Provide continuous reporting for all of the supplier's key attributes, such as its
ownership, geolocation, and foreign control as well as for any changes of the key
attributes, and

f. Notify the customer of cyber incidents and investigations, mitigations, and impacts
to the product or the development environment of the product. Periodicity of
notifications are to include time of delivery, time period of support and
maintenance.

2.2 Deployment

2.2.1 Acceptance of Product

Customers should take appropriate precautions prior to accepting the product from the supplier or
developer. Upon initial receipt of the product, the customer should thoroughly examine it. This
includes verifying that the product is the same as the one that was evaluated at the time of pre-
acquisition evaluation, or an acceptable update, checking for evidence of tampering or substitution,
and confirming receipt of required artifacts and supporting documentation for the product.

Threat scenarios

Failure to thoroughly examine the acquired product exposes the customer to several software
supply chain threats. These include:

• Substitution of another product or a counterfeit product for the ordered product,

• An incomplete or incorrect version of the ordered product,

• Product tampering,

• Missing documentation, artifacts, or references for the product.

Recommended mitigations

Customers should have policies and mechanisms in place to mitigate threats from received
software. Some of the actions the customer should take depend on the supplier or developer
because they should inform the customer how to verify the results of the actions.

1. Verify the security of the infrastructure(s) used by the supplier for the distribution of their
products. If the security is invalid or insufficient, the deployment should be blocked, and
further risk response taken as needed.

2. Verify the integrity of the product, using mechanisms that include safeguards such as
hashes, signatures, or certificates, as well as other out-of-band methods of verification.

3. Verify the integrity of the individual components in the distribution. This may be verified
via hash or signature (possibly using the same key that signed the full distribution package),
or a similar method for providing integrity of the component.

4. Verify the SBOM against the product delivered.

Securing the Software Supply Chain: Recommended Practices for Customers 9

5. Verify the self-attestation mechanism is signed by the developer- or supplier-designated

official(s) as a means of representing the security hygiene of the development process and
infrastructure.

2.2.2 Functional Testing

For functional testing there should be processes for creating tests and test environments, installing
and setting up of a product, executing tests, and reporting test results. The tests, and test
environment, should be saved and stored for future reference and use. Final steps should include
verifying the contents of the SBOM against the product under evaluation.

Threat scenario

The following scenarios could potentially yield threats:

• Product functionality unknowingly changes,

• Product contains unverified or unknown components.

Recommended mitigation

Recommended mitigations include:

• Saving and storing the tests and test environment for future reference and use,

• Verify the contents of the SBOM against the product under evaluation.

2.2.3 Assurance – Security Testing/Validation

Adversaries, whether they are nation-states or individuals, are continually looking for weakness
within an organization's information system environment. These weaknesses range from
misconfigured systems to lapses in the security testing or validation process. Organizations must
address this ever-increasing threat vector by implementing stringent control mechanisms.

An organization should minimize threats according to their risk tolerance. To satisfy this
requirement, organizations should establish and support a risk management program by
understanding the risks associated with their information assets through:

• Risk identification (i.e., where and what is the risk),

• Risk analysis (i.e., how severe is the current level of risk),

• Risk evaluation (i.e., is the current level of risk acceptable).

To effectively implement the overall information assurance process through security testing or
validation, as well as to keep the cyber ecosystem safe and intact, organizations should adhere to
recommended mitigation strategies found in this guide as well as those provided in other
resources. Such strategies include, but are not limited to, performing software risk assessments,
creating software security tests, creating a software test environment, installing and setting up of
software products, running software tests, validating software requirements through SCRM
practices, and reporting results.

When selecting specific software security scanners, organizations should weigh the criteria for
choosing a one-size-fits-all tool as such an approach may compromise the organization's overall

Securing the Software Supply Chain: Recommended Practices for Customers 10

security posture. Effectiveness of technology, cost, presence or absence of key metrics and clear
visualization, and comprehensiveness of coverage are some key factors to be considered.

Verifying whether security controls and settings that are currently in place are crucial to mitigating
cyber threats within information assets. Additional layers of analysis and evaluation performed
through automated penetration or security testing by red teams could help to validate whether
deployed controls are effectively providing security. In addition to testing controls, red team
members may use real scenarios to test actual response and detection capabilities. Blue team
members also play a pivotal role by validating security controls through on-site assessments by
either periodical or a continuous monitoring.

Threat scenario

Thorough and comprehensive security testing and validation is crucial because it allows
organizations to prevent attacks, incidents, threats, and network compromises. Threats to
information security can be in the form of software attacks (e.g. malware, file-less malware, viruses,
worms, macros, denial of services, script injections, etc.) or in the form of technical software
failures or errors (e.g., bugs, code problems, loopholes, back doors, etc.).

From the software supply chain threat perspective, major threats include, but are not limited to:

• Unknown changes in functionality or security of a product after deployment, complexity of
the scanning, detection, and removal of malware in a virtualized environment,

• Event-driven malware where the malicious code remains dormant until a predefined date
to be triggered, and product stores,

• Transferring or consuming data, metadata and content to or from external resources-both
encrypted and unencrypted,

• Compromise of product development infrastructure or processes during the initial product
development phase,

• Lack of proper security hygiene or cyber maturity from the supplier,

• Lack of rigorous vetting of or decreased insight into the supplier's attributes such as
ownership, geolocation, and foreign control.

Securing the Software Supply Chain: Recommended Practices for Customers 11

Recommended mitigations

Recommended mitigation examples include:

1. Create a platform where tests and test environments can be saved for future use. This helps
organizations prepare consistent test conditions and testing approaches to evaluate a
product's effectiveness. Within the security test suite, include an actual runtime end-state
environment to test and run the program for sufficient time to verify that no hidden or
latent functionalities occur.

2. Verify data protection, implementation, and geolocation requirements match the intended
customer's requirements.

3. Review and validate the self-attestation of cybersecurity hygiene of the supplier's
development process and the infrastructure supporting the development of their product
against security and SCRM requirements as defined by the contract in place.

4. Incorporate a continuous security validation approach by adopting a frequent testing and
validation scheme in order to increase cyber resiliency.

2.2.4 Configuration Control Board Review

Product operations, maintenance, and support is a key part of the software product's lifecycle.
Configuration and change management are central to IT service management (ITSM) and should be
overseen by an organization's Configuration Control Board (CCB) also known as the Change Control
Board. Front-end responsibilities of the CCB with respect to software include:

• Receiving functional and assurance findings such as reports and testing results,

• Determining risk of the software, both on its own and in terms of interdependencies with
existing systems and software,

• Determining any changes needed for authorization to operate (ATO) or equivalent internal
approvals,

• Making a go/no-go decision on the product,

• If applicable, documenting the approved configuration of the product with all future
changes to product configuration documented and that documentation maintained.

Threat scenarios

The following scenarios are indicators of vulnerabilities in the CCB review which may be exploited:

• The CCB receives inaccurate or incomplete product reports from developers, suppliers,
testers, etc., which limits their ability to make accurate decisions,

• The CCB receives insufficient information on the product's functionality, operations,
intended use, etc.,

• CCB members lack specific knowledge or expertise on the product or the product's overall
technology area to make an informed decision,

• The CCB review is biased by internal or external factors, leading to less-than-optimal
decisions.

Securing the Software Supply Chain: Recommended Practices for Customers 12

Recommended mitigations

The customer may use the following mitigations to minimize the likelihood of these threats within
the CCB review process from occurring:

1. Evaluate organizational SCRM requirements for all supporting product documentation from
developers, suppliers, testers, etc.

2. Use protected and secure channels of communication to relay functional and assurance
reports and product testing results.

3. Ensure subject matter experts are on the CCB or that they are consulting with the CCB.

4. Validate and document the CCB decision-making process as it proceeds.

2.2.5 Integration

After procurement, the customer's IT team puts the product into operation for evaluation. Next, the
team plans for integration and roll-out. This involves establishing integration processes and
implementing or configuring controls for threats that are common to the integration phase.

The integration process begins with establishing an integration plan. Integrators will need to
leverage both the functional requirements as well as the functional test phase data (i.e.,
configuration, environment, and results data) to define the integration plan. The plan will need to
account for the integration of the software or product into its operating environment (enterprise,
cloud, hybrid, client, etc.) and the deployment of configuration controls specific to the software or
product within its operating environment.

Product modification is integral throughout the integration process. Internal offices and third-party
suppliers may need to modify and adjust development of the product which would not only support
the actual integration but also support functionality to meet customer needs. Additionally, any
product modifications will need to be developed and tested.

Exploited software supply chain vulnerabilities may open the door to additional vulnerabilities.
Assumptions built into the product may be violated during testing that could lead to potentially
vulnerable conditions. Also, either wittingly or unwittingly, internal development may introduce
software supply chain vulnerabilities such as compromised components, backdoors, or unknown
documents, functions or features.

Threat scenarios

Testing is a key part of product integration. The software or product will need to undergo
functional testing, interoperability testing, and production security testing. The latter leverages
assurance testing, validation plan tests, and environmental configuration. An organization's internal
security processes may also introduce exploitable vulnerabilities.

The integration process requires reviewing the product for vulnerabilities that are common to
integration, such as the following:

• Undocumented software modifications or a supplier's inability to support the product after
customer modifications,

Securing the Software Supply Chain: Recommended Practices for Customers 13

• Products that hide malicious functionality during functional, interoperability, and security

testing or products that exfiltrate trust artifacts provided to it (e.g., CodeCov7 exfiltrating
credentials),

• Internal product modifications where integrators and testers use their own tools or
monitoring capabilities rather than the enterprise tools under which the product will be
deployed.

Recommended mitigations

The following mitigations may be used to minimize the likelihood of threats occurring during the
integration process:

1. Due to the threat that malicious actors compromised the test environment, use multi-
layered defenses (i.e., Zero Trust).

2. During testing, utilize test credentials and other artifacts where possible to avoid giving real
IDs.

3. Make the integration test environment realistic by using tools that reflect the deployment
environment.

4. Continuously monitor the test environment and product during operation to augment
integration testing.

5. Block beaconing to malicious and unneeded sites.
6. Minimize trust artifacts given to products.
7. Maintain and review logs for evidence of unexpected behavior.
8. Conduct updated security testing to include any post-acquisition product modifications.
9. Where possible, coordinate product modifications with the supplier or seek contract

support from the third party that performed the modifications and ensure documentation
for product.

10. Add the software or product to the application allowlist in addition to any security and
network monitoring lists or tools.

11. Deploy security controls for the software or product in its operating environment.

An important process for product integration is establishing trust relationships for the new
software or product within the organization and partner-organizations. This includes assigning
administration rights and rights for credentials, permissions, accesses, applied people, devices, and
entities. The integration process requires creation of rules, roles, and groups to integrate the new
product within the existing security infrastructure.

2.2.6 Roll-Out of Initial Product

After the software product is integrated into the environment, the deployment phase begins.
Environments into which products may be installed and deployed includes client systems,
enterprise network software installations, cloud service offerings, and hybrid deployments. After

7 CodeCov is a tool that is used to measure the test coverage of a codebase. It generally calculates the coverage
ratio by examining which lines of code were executed while running the unit tests.

Securing the Software Supply Chain: Recommended Practices for Customers 14

the software is installed, the deployment team validates the success of the installation and
integration into the environment and typically performs and documents a post-installation analysis.

Threat scenarios

Examples of vulnerabilities which create potential threats and risks during the deployment process
include:

• The software product deployed is an altered version from intended configuration or
condition,

• The team that performed the deployment does not complete a readiness assessment prior
to deployment or before the deployed product goes live,

• The product activates malicious functionality after time has elapsed, or when a condition is
satisfied,

• The software product disables defensive measures prior to-or as part of-activation of
malicious functionality, often in a covert way that is hard to detect, such as the malware
inserted into the SolarWinds software,

• The software product falsifies results to validate assessments,

• The software developer intentionally or unintentionally leaves backdoors in the product,

• The organization has poor cybersecurity posture or cyber hygiene in general, leaving
threats unmitigated.

Recommended mitigations

The following mitigations can help reduce threats and risks associated with the deployment
process:

1. The developer or supplier should inform the customer on how to verify the integrity
mechanisms so that the deployment team or supporting IT function can check and verify the
software product's integrity mechanisms (e.g., product file hashes, config file hashes) during
deployment to ensure integrity.

2. Deployment teams should not rely solely on product self-reporting and should employ an
independent means of validation.

3. After validation, the software product can be added to the application allowlist for the given
environment.

4. As part of Security Operations, continuously monitor the product, including for
unauthorized encrypted sessions that can't be inspected, and block these where possible.

5. The security team should (in collaboration with the deployment team) implement strict
least privilege for product access and resources using default deny policies where possible.

6. As part of Security Operations, product-specific monitoring should be performed based on
risk management determination for criticality.

Securing the Software Supply Chain: Recommended Practices for Customers 15

2.2.7 Upgrade of Product

During the lifecycle of a software product, a supplier may develop and deploy a newer version to
the customer. When the customer's IT organization creates and implements a product upgrade
plan, the plan should include performing a set of integration, security, and interoperability tests.
The scope of these tests should be based on the customer's risk tolerance for the upgrade. The plan
should identify and incorporate tests for new functionality, or changes in security assumptions
being introduced by the upgrade. The test plan should include regression testing that incorporates
previous test results from prior upgrades and the original product deployment. Application
allowlists should be updated to allow for the upgraded version of the software product. Finally, IT
should assign or change any new permissions, credentials, rights, policies, or roles as required by
the software product's upgrade.

Threat scenarios

Throughout the processes required to implement and deploy software upgrades, vulnerabilities
may exist or be introduced, exposing the software to certain threats. Examples of vulnerabilities
which create potential threats and risks during the upgrade process include:

• The team performing the upgrade lacks a thorough readiness assessment and plan prior to
deployment of the upgrade or before the upgrade goes live,

• Software upgrades are compromised or altered from the intended configuration or
condition,

• Product upgrades falsify testing/validation results or introduce malicious functionality,
which activate after some time has elapsed or a condition has been satisfied,

• The functionality of an upgrade disables defensive measures prior to or as part of a
malicious functionality being activated (often in ways that are hard to detect, e.g., the
malware that compromised SolarWinds),

• Product developers intentionally or unintentionally introduce backdoors in the product that
lead to exposures.

A lack of readiness assessment and planning could lead to a lack of appropriate controls and
validation of the upgrade to the software product. It could also lead to substitution of products via
the upgrade, missing documentation and artifacts, and wrong versions or incomplete upgrades to
the product. A more general risk may exist if the organization has a poor cybersecurity posture,
resulting in many of these risks going unmitigated.

Recommended mitigations

The following recommendations for security controls and mitigations could help reduce the risks
and threats associated with the deployment process of an upgrade:

1. The deployment team or a supporting IT function should verify the veracity of the software
product upgrades and integrity mechanisms (e.g., product file hashes, configuration file
hashes, and component hashes) to ensure integrity.

2. The upgrade deployment team should verify the integrity of the method and infrastructure
from where the upgrade was obtained (e.g., Website, CDN, push mechanism, etc.).

Securing the Software Supply Chain: Recommended Practices for Customers 16

3. The upgrade deployment team should verify the updated SBOM against the product

delivered and confirm that the self-attestation is signed by a supplier designated official
responsible for the security hygiene of the development process or infrastructure.

4. The upgrade deployment team should employ independent means of software validation,
not solely relying on product self-reporting.

5. After validation, the upgraded software product should be added to the application allow
list for the given environment.

6. The security operations team should continuously monitor for unauthorized encrypted
sessions that can't be inspected and consider blocking encrypted sessions if possible.

7. The security operations team should perform product-specific monitoring based on risk
management determination for criticality.

8. The upgrade deployment team (in collaboration with the security operations team) should
implement strict least privileges for product access and resources using default deny
policies where possible.

9. The security operations team (in collaboration with the upgrade deployment team) should
compare behavior pre- and post-upgrade and investigate any differences.

2.2.8 Product End-of-Life

As part of the lifecycle of any product, the customer organization may decide to remove the
software product from its systems. This could be due to a decision to move to a different software
product supplier, end of need or mission, end-of-life (EoL) of product by supplier or developer, a
risk management determination, or other reasons. The customer IT organization should assign a
team to plan, manage, and implement EoL procedures and removal of the software product from
the organization. The plan should include the process for removing the software, provisions for
exceptions, and a training plan (including content development and training for pre and post
removal). The team should coordinate with IT security operations to remove all trust relationships
associated with the software product as well as to create a security monitoring plan for the period
of the removal and for exceptions to the removal.

The security operations team should document and implement a plan for removal of trust
relationships. The plan should include:

• Deactivation of credentials,

• Deactivation of permissions/accesses/rights (applied to people, devices and entities),

• Deactivation of the product administrator accounts,

• Removal of all rules/roles/groups for product in existing security infrastructure, (except
for what is implemented as exceptions per the exception plan),

• Removal of the product from application allowlists,

• Adding the software product to the denylist in security and network monitoring tools.

Security operations should use segmentation and isolation security procedures for exceptions to
the removal plan.

Securing the Software Supply Chain: Recommended Practices for Customers 17

Threat scenarios

Even with detailed plans and procedures in place, a few threats may persist within the end-of-life or
software product removal process:

• The product leaves some functionality behind, causing an exposure or unmonitored risks,

• Credentials or other trust artifacts are not revoked or removed, leaving an exposure,

• An inexperienced team is assigned to the EoL procedures and plan development, leading to
risks and exposures to the process and post process environment,

• Dependency or reliance on other software products, workflows, or on other systems for the
product that is being removed, leading to exposure or disruption of those other systems.

Recommended mitigations

1. The customer IT team assigned to the EoL process should collaborate with the security
operations team to:

a. Create and implement a plan to remove all trust relationships associated with the
software product,

b. Create a security monitoring plan for the period of the removal as well as for
exceptions to the removal.

2. The security operations team should document and implement a plan for the removal of
trust relationships. This plan should include:

a. Deactivation of credentials/permissions/accesses/rights-applied to people, devices
and entities,

b. Deactivation of the product admin accounts,
c. Removal of all rules/roles/groups for a product in an existing security

infrastructure, except for what is implemented for exceptions per the exception
plan, and

d. Removal of a product(s) from application allowlists, and adding the software
product to the denylist in security and network monitoring tools.

3. The security operations team should use segmentation and isolation security procedures
for exceptions to the removal plan.

4. The customer IT team assigned to the EoL process should have a standard operating
procedure for decommissioning software products that includes checking for residual
functions, files, etc. The team should use an asset management tool to verify what is in the
environment and validate that the software product being decommissioned or removed has
actually been removed and decommissioned.

5. The IT team and the security operations team should use and implement a testing plan to
validate that trust artifacts for the product have been fully decommissioned. A plan should
be jointly created and implemented between the customer IT team assigned to the EoL and
the security operations team to handle exceptions to the software removal.

6. The customer IT team assigned to EoL activities should perform a dependency analysis
prior to EoL to identify software, workflow, and systems dependencies that may adversely

Securing the Software Supply Chain: Recommended Practices for Customers 18

affect the organization and its processes after the software is removed. An independent
verification of the software product removal should then be implemented (i.e. red team v.
blue team checks).

2.2.9 Training/Enablement

A key element that ensures successful and safe deployment of software products is having an
established and effective training program in place for new software products. Training on new
software should be created and rolled out as a comprehensive activity across an organization, with
content tailored for network administrators, security administrators, and any key user of the
product. Best practices also dictate that key users receive regular ongoing product training on a
cadence appropriate to the sensitivity and risk associated with the product.

Threat scenarios

For organizational efficiency, training is usually rolled out through the use of training software that
is installed on the operational system. This form of dissemination exposes the training to some
degree of threat. But even when training is provided in-person, associated risk may still risks arise:

• Training software may be compromised by an adversary, resulting in disruption of training
availability or changing of instructional content,

• Training systems or their dependencies can be compromised to send back information to a
malicious actor, such as training content or trainee information,

• Training may omit key elements of how to securely operate the software.

Recommended mitigations

The following controls should be adopted by the customer to prevent software training from adding
to potential threats and risks:

1. Implement mechanisms (administrative, policy and technical) to ensure the integrity of
training software and/or systems.

2. Discourage and filter unnecessary communications of training and training software
outside of the training environment or organization.

3. Apply good security hygiene on the training environment.
4. Develop a checklist of key product security features and risks and ensure these items are

included in the product training.

2.3 Software operations

2.3.1 User

The highly distributed nature of computing environments requires the end-user or other
responsible parties to contribute towards the goal of maintaining the IT security of the enterprise.
Promptly reporting bugs or other anomalies in their use of IT systems and applications is a primary
way a user may contribute. While this may increase volumes for the helpdesk, some of the volume
will be quickly remedied through direct education. However, it is important to encourage users to

Securing the Software Supply Chain: Recommended Practices for Customers 19

promptly report anything they see as anomalous, as most users do not have the training to discern
the difference between a mistake and a potential security issue. User reports that aren't clearly
addressable by on-the-spot user education, should be investigated and resolved or escalated to the
security operations center (SOC) for further analysis.

Threat scenarios

User reports of anomalous behavior can indicate potential or active security exposures such as:

1. Reports explained as the result of a software update or functionality change.
2. The identification of bugs and possible security vulnerabilities, but some users may not be

experienced in such analyses.
3. Trends and correlations with other activities may only be identified through aggregation,
4. Patches may already be available to address the issue. Therefore, all other cases should be

logged, escalated to the supplier, and shared with other customers.
5. Some software may be configured to accept updates without requiring user interaction or

knowledge, in other cases the users themselves may have initiated the software update.

Recommended mitigations

Customers should have policies and mechanisms in place to carry out activities that can mitigate
threats encountered through software received or purchased as follows:

1. All users, regardless of responsibility or experience, should be trained on how to detect and
report anomalies. In some situations, a "bug bounty" program may be helpful to encourage
both users and customers to report anomalies.

2. All reports to the helpdesk should be logged regardless of immediately perceived
importance.

3. All users should understand when it is appropriate to apply updates to a system.

4. Enterprises should be able to disable, or at least isolate, a particular product. Users
instructed to do so may elect not to do so to complete their work or mission.

5. Enterprises should have a mechanism for informing users of product anomalies and, when
potential security concerns exist, how to disable that product. The enterprise may be better
served if this software disabling capability could be accomplished through a central point.

6. Enterprises should have a formal process for notifying a supplier of these anomalies and
tracking these reports until resolved and distributed to the users and customers. If such
reports go unresolved for an unreasonable period of time the enterprise should seek
alternatives to that product.

2.3.2 Updates

Updating products is necessary and poses some risk. Following an update, the customer may
perceive the product as operating differently, it may not interoperate with other products and
services as before, or it may not work at all. Some updates may pose a higher risk than others, such
as operating system updates, critical system application updates, and updates to customer-facing

Securing the Software Supply Chain: Recommended Practices for Customers 20

systems. Updates should be applied only through a defined and monitored fashion. An enterprise
should have trusted processes in place whereby the customer and supplier may exchange
information regarding updates. These processes should include notifications that an update or
patch is available, how it can be obtained or distributed (if necessary), and a way to verify the
authenticity and integrity of the update or patch once it is received by the enterprise. In the case of
end-user applied updates or patches, the customer must have a similar trusted process for verifying
the authenticity and integrity of an update or patch.

Threat scenarios

Processes should be in place to help mitigate this risk, subject to the organization's tolerance of risk
relating to that product's role. Recognize that updates can present potential risks to the product as
depicted in the following scenarios:

1. Updates coming from unreliable sources (e.g., a supplier or provider other than a company's
usual software supplier or provider) with no clear means of verifying its origin. There must
also be a trusted means of verifying the integrity of the update to protect against software
supply chain interference.

2. New capabilities or functionalities revealed during integration, interoperability, and
security regression tests interfere with existing operations. Any adverse interactions or
security problems should be promptly reported to the provider and a risk assessment
performed to determine whether to deploy the update.

3. Undocumented or unclear instructions on how a customer should implement an update, to
include updating application allowlists, access control policies, credentials, or other roles;
and reverifying the integrity of the update on the customer system.

4. The software supply chain itself could be unsecure, resulting in an update that has been
tampered with or replaced. Personnel or customers might apply the update incorrectly or
fail to include the associated updates to access control, etc., as mentioned above. When
updates are applied by customers, care must be taken to ensure that the update comes from
a trusted source when it arrives on their system. Otherwise, an insider might attempt an
internal software supply chain attack.

Recommended mitigations

Updating systems is a necessary part of IT management. As such, it is an attractive target for
adversaries. Tampering with updates, replacing them with false updates, valid updates that disrupt
normal system functionality (by accident or by design), or outright disruption of the flow of updates
are all possibilities. To address the risks posed by updates, several controls should be implemented:

1. Ensure updates are only retrieved from authorized and authenticated sources via approved
channels. The developer or supplier should provide detailed update notes with all changes
documented. The developer or supplier should also inform the customer on how to verify
the integrity of the infrastructure and mechanism provided by the update. This could take
the form of hashes, signatures, or other cryptographically sound mechanisms, or via out-of-
band measures.

Securing the Software Supply Chain: Recommended Practices for Customers 21

2. Ensure the integrity of the updated SBOM and the contents of the update using automated

analyses. Similar means must be applied in the case of updates containing other updates or
updates to multiple subsystems or applications.

3. Perform automated security and functionality tests on updates to software, including
comparisons of system behavior pre and post update. In the case of unexpected and/or
undocumented differences, suspend the deployment of the update until these discrepancies
are resolved.

4. Implement continuous monitoring of update sources and methods.
5. Implement continuous monitoring of software versions across the enterprise, including

end-user systems and remote systems and sensors.

2.3.3 Security/Supply Chain Risk Management Operations

Supply Chain Risk Management (SCRM) operations are crucial to systematically assess potential
risks, increase supplier visibility, and reduce the overall software supply chain driven impact of an
organization. To this end, workflows have been categorized into various processes, threats, and
recommended controls accordingly.

Defining and maintaining a master baseline for new software or products through its host or device
name, network, infrastructure (cloud), etc. is critical to keep the overall information system
boundary safe and intact. Continuous monitoring of the product for changes in functionality or
security events, as well as incorporating a comprehensive vulnerability management program and
best practices are highly recommended. In addition to conducting ongoing credentials and rights
management, and putting an incident reporting and response initiative in place, organizations
should determine whether a network is running optimally through network monitoring, including
Domain Name Systems (DNS) monitoring, which ensures maximum health. Organizations should
perform regular security testing, audits of software or products, and audits of their environments
or infrastructures. Finally, implementation of continuous monitoring of the entire SCRM calculation
with the ability to implement appropriate controls to mitigate changes, to assumptions and
security, or risks and threats in coordination with the procurement team is highly recommended.

Threat scenarios

Software supply chain driven risks (internal or external) are a serious threat and can cause
disruptions to operations and processes such as:

• Malicious software that disables, negates or hides from security agents or monitoring tools
in place in user environment,

• Appropriate logs not being collected, analyzed, or correlated; and partial/incomplete
continuous monitoring and security audit(s).

Recommended mitigations

Organizations should control and monitor their own risk posture as well as software supply chain
driven risks from immediate suppliers and third-parties. To keep data ecosystems safe,
organizations should implement recommended SCRM controls to mitigate both known and
unknown software supply chain related risks. Some recommended practices are:

Securing the Software Supply Chain: Recommended Practices for Customers 22

1. Enabling integrity protections on all deployed security agents.

2. Deploying out-of-band security tools to monitor from off-system (trust boundaries).

3. Regular and continuous red team (threat) hunting and security event exercising.

4. Risk management-based approaches to identify logging and event monitoring for specific
software products.

5. Security operations training on monitoring and security analysis of software products.

6. Implementing mechanisms to rapidly instrument and deploy sensors to software product
specific events and Indicators of Compromise (IOCs)-which includes projection of future
capabilities to increase fidelity of response to data collected from sensors (e.g., AI /ML).

7. Implementing a threat model based on the software product's specific risks and threats and
updating the threat model with latest adversary and product risk intelligence or factors.

8. Performing regular threat modeling on software products within the current system
environment and leveraging cross government and industry threat sharing mechanisms to
address software supply chain risks.

Securing the Software Supply Chain: Recommended Practices for Customers 23

3 Appendices

3.1 Appendix A: Crosswalk between Scenarios and SSDF

The section reference numbers in the below crosswalk may look similar for each role (Developer,
Supplier and Customer) however they are from the respective parts of the Series. (PO - Prepare
Organization; PW - Produce Well-Secured Software; PS - Protect Software; and RV - Respond to
Vulnerabilities)

SSDF # Developer Supplier Customer
PO.1 2.2.3 Secure Development

Practices
2.1.1 Define criteria for
software security checks

PS.1 2.2.1.1 Source Control
Check-in Process

2.2.1.4 Code Reviews

2.2.6 External
Development Extensions

2.3.2 Selections and
Integration

2.4.1 Build Chain Exploits

2.5.3 Secure the
Distribution System

2.2.1 Protect all forms of
code from unauthorized
access

2.2.2 Provide a
mechanism for verifying
software release integrity
(PS.1, PW.9)

PS.3 2.2.1.1 Source Control
Check-in Process

2.2.1.2 Automatic and
Manual Dynamic and
Static Security /
Vulnerability Scanning

2.3.2 Selections and
Integration

2.3.3 Obtain Components
from a Known and
Trusted Supplier

2.4.1 Build Chain Exploits

2.2.3 Archive and protect
each software release

PW.1 2.3.2 Selections and
Integration

2.3.1 Design software to
meet security
requirements

PW.3 2.2.3 Secure Development
Practices

2.3.2 Selections and
Integration

2.3.2 Verify third-party
software complies with
security requirements

2.1 Procurement/Acquisition (1)
Requirements Definition /
Recommended Controls
(viii)(viii)

Securing the Software Supply Chain: Recommended Practices for Customers 24

 2.3.3 Obtain Components
from a Known and
Trusted Supplier

2.3.4 Component
Maintenance

2.3.5 Software Bill of
Material (SBOM)

 2.2 Deployment (6)
(2) Testing - Functionality (c)
Recommended Controls (ii)
Verify contents in SBOM

2.2 Deployment (6)
Deploy (3) Contracting /
Recommended Controls (v) (viii)
(ix)(x)

PW.6 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.3.3 Configure the
compilation and build
processes

PW.7 2.2.1.4 Code Reviews

2.2 Open-Source
Management Practices

2.3.4 Review and/or
analyze human-readable
code

 2.2.6 External
Development Extensions

 2.3.2 Selections and
Integration

 2.3.3 Obtain Components
from a Known and
Trusted Supplier

PW.8 2.2.1.3 Nightly Builds
with Regression Test
Automation

2.3.2 Selections and
Integration

2.4.1 Build Chain Exploits

2.3.5 Test executable code

PW.9 2.2.3.2 Use of Unsecure
Development Build
Configurations

2.4.1 Build Chain Exploits

2.2.2 Provide a
mechanism for verifying
software release integrity
(PS.1, PW.9)

 2.3.6 Configure the
software to have secure
settings by default

RV.1 2.3.4 Component
Maintenance

2.4.1 Build Chain Exploits

2.4.1 Identify, analyze,
and remediate
vulnerabilities on a
continuous basis

Securing the Software Supply Chain: Recommended Practices for Customers 25

3.2 Appendix B: Dependencies

3.2.1 Customer Group Dependencies

Dependencies and artifacts recommended to be performed or provided by the supplier for benefit
of the customer to aid in adequately evaluating and assessing software.

Dependency
1 SBOM (or similar Software Bill of Materials artifact) for product

2 SBOM (or similar Software Bill of Materials artifact) for product update

3 SBOM (or similar Software Bill of Materials artifact) for product upgrade

4 Verifiable integrity (e.g., hash/signature) of product distribution package

5 Verifiable integrity (e.g., hash/signature) of product update

6 Verifiable integrity (e.g., hash/signature) of product upgrade

7 Verifiable integrity (e.g., hash/signature) of suppliers' product distribution system/method
infrastructure

8 Verifiable integrity (e.g., hash/signature) of product components in distribution package

9 Self-attestation artifact of cybersecurity hygiene of their development process and the
infrastructure supporting the development of their product (see artifacts appendix)

10 The self-attestation is signed by responsible official or executive

11 Notification from supplier of all updates and modifications to functionality, vulnerabilities,
and support from time of evaluation to time of delivery of product

12 Artifacts provided by supplier that document attributes such as geo-location, supplier
ownership/control, DUNS (if applicable), past performance

13 Artifacts provided by supplier that document attributes such as the available geo-location,
supplier ownership/control, DUNS, past performance for third-party suppliers identified in
the SBOM

14 Artifacts sent by supplier will be in a standardized format (e.g., SBOM)

15 Notification from supplier of changes to/of supplier ownership, geo-location, and control of
supplier, supplier, and third parties

16 Notification from supplier of cyber incidents and investigations and mitigations and any
impacts to the product or the development environment of the product at time of delivery

17 Notification from supplier of cyber incidents, investigations and mitigations, and any impacts
to the product or the development environment of the product post acquisition (for period of
support and maintenance)

Securing the Software Supply Chain: Recommended Practices for Customers 26

3.2.2 Developer Group Dependencies

Green - Dependencies and artifacts recommended to be provided by the supplier for benefit of the
developer.

Dark Green - Dependencies and artifacts recommended to be provided by the third-Party
suppliers for benefit of the developer.

Pink - Dependencies and artifacts recommended to be provided by the customer for benefit of the
supplier/developer.

Dependency

1 Provide issues from customers

2 Provide given hashes as required

3 SDLC policies and procedures

4 Secure architecture, high-level design

5 Qualified team assembly with code/security training

6 Independent QA individual/team

7 Independent security audit individual/team

8 Open-Source Review Board (OSRB) with repository

9 Product release management/resources

10 SBOM

11 Development location and information

12 Third-party SBOM

13 Third-party License

14 Release notes (detailing vulnerabilities fixed)

15 Vulnerability notifications

16 Publish updates and patches to the customer to address new vulnerabilities or weaknesses
found within the product

17 Requirements and criteria for success

18 Implied industry security requirements

19 Provide issues from operational environment, take updates and patches

20 Vulnerability notifications and reporting from the users

Securing the Software Supply Chain: Recommended Practices for Customers 27

3.3 Appendix C: Supply-Chain Levels for Software Artifacts (SLSA)

Supply-Chain Levels for Software Artifacts (SLSA) is a security framework from source to service,
giving anyone working with software a common language for increasing levels of software security.
The framework is currently in Alpha stage and constantly being improved by supplier-neutral
community. Google has been using an internal version of SLSA since 2013 and requires it for all of
their production workloads. http://slsa.dev

Requirement Description L1 L2 L3 L4

Scripted build All build steps were fully defined in a "build script." The
only manual command, if any, was to invoke the build
script.
Examples:

• Build script is Makefile, invoked via make all.
• Build script is. github / workflows / build.yaml,

invoked by GitHub Actions.

✓ ✓ ✓ ✓

Build service All build steps run using a build service, not on a
developer's workstation.
Examples: GitHub Actions, Google Cloud Build, Travis
CI.

 ✓ ✓ ✓

Ephemeral
environment

The build service ensured that the build steps ran in an
ephemeral environment, such as a container or VM,
provisioned solely for this build, and not reused from a
prior build.

 ✓ ✓

Isolated The build service ensured that the build steps ran in an
isolated environment free of influence from other build
instances, whether prior or concurrent.

• It MUST NOT be possible for a build to access any
secrets of the build service, such as the
provenance signing key.

• It MUST NOT be possible for two builds that
overlap in time to influence one another.

• It MUST NOT be possible for one build to persist or
influence the build environment of a subsequent
build.

• Build caches, if used, MUST be purely content-
addressable to prevent tampering.

 ✓ ✓

Parameterless The build output cannot be affected by user parameters
other than the build entry point and the top-level
source location. In other words, the build is fully
defined through the build script and nothing else.

Examples:
• GitHub Actions workflow dispatch inputs MUST be

empty.

 ✓

http://slsa.dev/

Securing the Software Supply Chain: Recommended Practices for Customers 28

 • Google Cloud Build user-defined substitutions
MUST be empty. (Default substitutions, whose
values are defined by the server, are acceptable.)

Hermetic All transitive build steps, sources, and dependencies
were fully declared up front with immutable references,
and the build steps ran with no network access.
The developer-defined build script:

• MUST declare all dependencies, including sources
and other build steps, using immutable references
in a format that the build service understands.

The build service:
• MUST fetch all artifacts in a trusted control plane.
• MUST NOT allow mutable references.
• MUST verify the integrity of each artifact.

o If the immutable reference includes a
cryptographic hash, the service MUST verify
the hash and reject the fetch if the verification
fails.

o Otherwise, the service MUST fetch the artifact
over a channel that ensures transport
integrity, such as TLS or code signing.

• MUST prevent network access while running the
build steps.
o This requirement is "best effort." It SHOULD

deter a reasonable team from having a non-
hermetic build, but it need not stop a
determined adversary. For example, using a
container to prevent network access is
sufficient.

 ✓

Reproducible Re-running the build steps with identical input artifacts
results in bit-for-bit identical output. Builds that cannot
meet this MUST provide a justification why the build
cannot be made reproducible.
"0" means that this requirement is "best effort." The
developer-provided build script SHOULD declare
whether the build is intended to be reproducible or a
justification why not. The build service MAY blindly
propagate this intent without verifying reproducibility.
A customer MAY reject the build if it does not
reproduce.

 0

Securing the Software Supply Chain: Recommended Practices for Customers 29

3.4 Appendix D: Informative References

In principle, any artifacts created during the lifecycle of the software development process are
owned by and private to a developing organization. These organizations can determine what
artifacts are made available with potential and current customers of a product with or without a
Non-Disclosure Agreement (NDA). Availability of information must take into consideration
regulatory and legal requirements, the customer requirements for the information and the risk
involved by exposing information leading to the exploitation of the product. Exceptions may include
open source development organizations, which are more inclined to make all development
information available, to include source code.

When defining the availability of an artifact, the general terms used in this section will be the
following:

1. Publicly disclosed,

2. Externally available,

a) under a Non-Disclosure Agreement (NDA),

b) government agency mandated requirement,

3. Private / company confidential.

The availability of an artifact varies between companies and agencies and is only described here as a
reference for what might be possible when using artifacts to validate the software supply chain
process. Some artifacts, such as a high-level architecture document may be intentionally generated
to allow any perspective consumers an introductory artifact detailing the overall strategies used in
the design, development, and operation of a product. These publicly disclosed documents may
describe common industry nomenclature, such as Federal Information Process Standards (FIPS)
compliance, cryptography standards used, development processes adhered to or certifications
processes passed. NDA and government mandated availability require contractual agreements
providing access to artifacts that would not normally be exposed by the organization that produced
the product. While private/company confidential artifacts are generally low-level and detailed work
products that may contain sensitive secrets and knowhow and if exposed, provide potential insight
into product's competitive implementation and threat vectors that may not be addressed in the
product, therefor posing a threat if exposed outside of the producer's environment.
Private/company confidential artifacts are generally maintained by the "Suppliers" and "Developers"
of the product to facilitate the auditing and validation of adherence to the Secure Software
Development Lifecycle (Secure SDLC) and security practices set forth by the product owner,
company, or organization. For more information on the Secure SDLC process, refer to Section 2.1
"Secure Product Criteria and Management", subsection Recommended Mitigations, Item 8 of Part
1 Developers of the series.

Most of the artifacts collected during the development lifecycle are not meant to be shared outside
the developing organization yet may be preserved in persistent storage as evidence to verify the
integrity of the policies and processes used during the development of a product. A developer should
securely retain artifacts of software development for a certain duration according to the secure
software development policies and processes. As a by-product of the process used to implement and
mitigate the attack surface and threat model of the software as well as the software build pipeline
during the development process, the following artifacts may be created, and collected:

Securing the Software Supply Chain: Recommended Practices for Customers 30

Abbreviation Document Name

ACM Communications of the ACM 17, "The Protection of Information in Computer
Systems". Available at
(http://web.mit.edu/Saltzer/www/publications/protection/index.html)

BSA BSA (2019) Framework for Secure Software. Available at
(https://www.bsa.org/reports/bsa-framework-for-secure-software)

BSIMM10 Migues S, Steven J, Ware M (2019) Building Security in Maturity Model (BSIMM)
Version 10. Available at (https://www.bsimm.com/download/)

CISA Cybersecurity & Infrastructure Security Agency. Available at
(https://www.cisa.gov/defining-insider-threats)

CISCO_SDLC Cisco. 2021. Cisco Secure Development Lifecycle. Available at
(https://www.cisco.com/c/dam/en_us/about/doing_business/trust-
center/docs/cisco-secure-development-lifecycle.pdf)

EO14028 EOP. 2021. "Improving the Nation's Cybersecurity", Executive Order 14028, 86
FR 26633, Document number 2021- 10460. Available at
(https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/)

FIPS140 National Institute of Standards and Technology. 2019. "Security Requirements
for Cryptographic Modules." Available at
(https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf).

IDASOAR Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources
(SOAR) for Software Vulnerability Detection, Test, and Evaluation 2016.
(Institute for Defense Analyses [IDA], Alexandria, VA), IDA Paper P-8005.
Available at (https://www.ida.org/research-and-
publications/publications/all/s/st/stateoftheartresources-soar-for-software-
vulnerability-detection-test-and-evaluation-2016)

INTEL Intel. Software Supply Chain Threats; A White Paper

ISO27034 International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), Information technology - Security techniques -
Application security - Part 1: Overview and concepts, ISO/IEC 27034-1:2011,
2011. Available at (https://www.iso.org/standard/44378.html)

MITRE_CAPEC MITRE. 2021. Common Attack Pattern Enumeration and Classification. Available
at (https://capec.mitre.org/data/definitions/437.html)

MITRE_CVE MITRE. 2021. "Common Vulnerability and Exposure, CVE." 2021. Available at
(https://cve.mitre.org/index.html).

MSSDL Microsoft (2019) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/sdl

NASASTD8739 National Aeronautics and Space Administration. 2021. "SOFTWARE ASSURANCE
AND SOFTWARE SAFETY STANDARD, NASA-STD-8739.8A." Available at

http://web.mit.edu/Saltzer/www/publications/protection/index.html)
http://www.bsa.org/reports/bsa-framework-for-secure-software)
http://www.bsimm.com/download/)
http://www.cisa.gov/defining-insider-threats)
http://www.cisco.com/c/dam/en_us/about/doing_business/trust-
http://www.whitehouse.gov/briefing-room/presidential-
http://www.ida.org/research-and-
http://www.iso.org/standard/44378.html)
http://www.microsoft.com/en-us/sdl

Securing the Software Supply Chain: Recommended Practices for Customers 31

 (https://standards.nasa.gov/sites/default/files/standards/NASA/PUBLISHED/A
1/nasa-std-8739.8a.pdf).

NICCS National Initiative for Cybersecurity Careers and Studies, National Initiative for
Cybersecurity Education. 2021 Workforce Framework for Cybersecurity (NICE
Framework). Available at (https://niccs.cisa.gov/workforce-
development/cyber-security-workforce-framework)

NISTCSF National Institute of Standards and Technology. 2018. "Framework for
Improving Critical Infrastructure Cybersecurity, Version 1.1." Available at
(https://doi.org/10.6028/NIST.CSWP.04162018)

NISTMSDV National Institute of Standards and Technology. 2018. "Guidelines on Minimum
Standards for Developer Verification of Software". available at
(https://www.nist.gov/system/files/documents/2021/07/13/Developer%20Ve
rification%20of%20Software.pdf)

NTIASBOM National Telecommunications and Information Administration. 2021. "The
Minimum Elements for a Software Bill of Materials (SBOM)." Available at
(https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-
materials-sbom)

NVD National Vulnerability Database. Available at (https://www.nist.gov/programs-
projects/national-vulnerability-database-nvd)

OWASP_ASVS Open Web Application Security Project (2019) OWASP Application Security
Verification Standard 4.0. Available at https://github.com/OWASP/ASVS

OWASP_SAMM Open Web Application Security Project (2017) Software Assurance Maturity
Model Version 1.5. Available at
(https://www.owasp.org/index.php/OWASP_SAMM_Project)

OWASP_SCVS OWASP. 2021. "OWASP Software Component Verification Standard." Retrieved
Sep. 25, 2021 (https://owasp.org/www-project-software-component-
verification-standard/).

OWASP_TEST Open Web Application Security Project (2014) OWASP Testing Guide 4.0.
Available at https://www.owasp.org/images/1/19/OTGv4.pdf

PCI_SSLRAP Payment Card Industry (PCI) Security Standards Council (2019) Secure Software
Lifecycle (Secure SLC) Requirements and Assessment Procedures Version 1.0.
Available at
(https://www.pcisecuritystandards.org/document_library?category=sware_sec
#results)

SC_AGILE Software Assurance Forum for Excellence in Code (2012) Practical Security
Stories and Security Tasks for Agile Development Environments. Available at
(http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf)

SC_FPSSD Software Assurance Forum for Excellence in Code (2018) Fundamental Practices
for Secure Software Development: Essential Elements of a Secure Development
Lifecycle Program, Third Edition. Available at (https://safecode.org/wpcontent/
uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev
elopment_March_2018.pdf)

http://www.nist.gov/system/files/documents/2021/07/13/Developer%20Ve
http://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-
http://www.nist.gov/programs-
http://www.owasp.org/index.php/OWASP_SAMM_Project)
http://www.owasp.org/images/1/19/OTGv4.pdf
http://www.pcisecuritystandards.org/document_library?category=sware_sec
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf)

Securing the Software Supply Chain: Recommended Practices for Customers 32

SC_SIC Software Assurance Forum for Excellence in Code (2010) Software Integrity
Controls: An Assurance-Based Approach to Minimizing Risks in the Software
Supply Chain. Available at
(http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0
610.pdf)

SC_TPC Software Assurance Forum for Excellence in Code (2017) Managing Security
Risks Inherent in the Use of Third-Party Components. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whit
epaper.pdf)

SC_TTM Software Assurance Forum for Excellence in Code (2017) Tactical Threat
Modeling. Available at
(https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_White
paper.pdf)

SLSA The Linux Foundation. 2021. "Improving artifact integrity across the software
supply chain - SLSA." Available at (https://slsa.dev/)

SP80050 National Institute of Standards and Technology. 2021. "PRE-DRAFT Call for
Comments: Building a Cybersecurity and Privacy Awareness and Training
Program, SPS 800-50 Rev 1." Available at
(https://csrc.nist.gov/publications/detail/sp/800-50/rev-1/draft)." Retrieved
Sep. 25, 2021.

SP80052 National Institute of Standards and Technology. 2020. "Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS)
Implementations, SP 800-52 Rev. 2." Available at
(https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final).

SP80053 National Institute of Standards and Technology. 2020. "Security and Privacy
Controls for

SP80057 National Institute of Standards and Technology. 2020. "Recommendation for Key
Management: Part 1 - General, SP 800-57 Part 1 Rev. 5." Available at
(https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final)

SP800160 National Institute of Standards and Technology. 2018. "Systems Security
Engineering." Available at (https://doi.org/10.6028/NIST.SP.800-160v1)

SP800161 "National Institute of Standards and Technology. 2021. ""Supply Chain Risk
Management Practices for Federal Information Systems and Organizations.""
Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf)"

SP800172 "Enhanced Security Requirements for Protecting Controlled Unclassified
Information: A Supplement to NIST Special Publication 800-171. Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-172.pdf)

SP800175B National Institute of Standards and Technology. 2020. "Guideline for Using
Cryptographic Standards in the Federal Government: Cryptographic
Mechanisms. SP 800-175B Rev. 1." Available at
(https://csrc.nist.gov/publications/detail/sp/800-175b/rev-1/final).

http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0
http://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whit
http://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_White

Securing the Software Supply Chain: Recommended Practices for Customers 33

SP800181 National Institute of Standards and Technology, National Initiative for
Cybersecurity Education. 2020. "Workforce Framework for Cybersecurity (NICE
Framework)." Available at
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-181r1.pdf)

SP800193 National Institute of Standards and Technology. 2018. "Platform Firmware
Resiliency Guidelines, SP-800-193." Available at
(https://csrc.nist.gov/publications/detail/sp/800-193/final).

SP800207 National Institute of Standards and Technology. 2020. "Zero-Trust Architecture,
SP-800-207."
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

SSDF National Institute of Standards and Technology. 2020. "Mitigating the Risk of
Software Vulnerabilities by Adopting a Secure Software Development
Framework (SSDF)." Available at
(https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf)

SWEBOK3 IEEE Computer Society. 2014. Guide to the Software Engineering Body of
Knowledge. Available at (https://www.computer.org/education/bodies-of-
knowledge/software-engineering/v3)

SYNOPSYS Synopsys. 2021. "Synopsys Information Security Requirements for Vendors."
Available at https://www.synopsys.com/company/legal/info-security.html

ZDNET IBM, ZDNET. 2021. "Managing a Software as a Vendor Relationship: Best
Practices". Available at (https://www.zdnet.com/article/managing-a-software-
as-a-service-vendor-relationship-best-practices/)

http://www.computer.org/education/bodies-of-
http://www.synopsys.com/company/legal/info-security.html
http://www.zdnet.com/article/managing-a-software-

Securing the Software Supply Chain: Recommended Practices for Customers 34

3.5 Appendix E: Acronyms

Acronym Meaning

ACQSEC Acquisitions Security
AI Artificial Intelligence
ATO Authorization to Operate
CCB Configuration Control Board
CIPAC Critical Infrastructure Partnership Advisory Council
CISA Cybersecurity & Infrastructure Security Agency
CNSSI Committee on National Security Systems Instruction
CTI Cyber Threat Intelligence
DUNS Data Universal Numbering System
EO Executive Order
EOL End-of-Life
ESF Enduring Security Framework
FARS/DFARS Federal Acquisition Regulation/Defense Federal Acquisition Regulation
FOCI Foreign Ownership, Control, Or Influence
IOC Indicator of Compromises
IT Information Technology
ITSM IT Service Management
ML Machine Language
NIST National Institute of Standards and Technology (US DOC)
NSA National Security Agency
NTIA National Telecommunications and Information Administration (US DOC)
ODNI Office, Director National Intelligence
PO Prepare Organization
PS Protect Software
PW Produce Well-Secured Software
RFI Request for Information
RFP Request for Proposal
RV Respond to Vulnerabilities
SBOM Software Bill of Material
SCRM Supply Chain Risk Management
SDLC Software Development Lifecycle
SLSA Supply-chain Levels for Software Artifacts
SOC Security Operations Center

Securing the Software Supply Chain: Recommended Practices for Customers 35

SOW Statement of Work
SSDF Secure Software Development Framework
USG United States Government

	Executive Summary
	DISCLAIMER
	DISCLAIMER OF ENDORSEMENT
	PURPOSE
	CONTACT
	Media Inquiries / Press Desk:

	Table of Contents
	1.1 Background
	1.2 Document Overview

	2 Customer
	2.1 Procurement and Acquisition
	2.1.1 Requirements Definition
	Threat Scenarios
	Recommended mitigations

	2.1.2 Product Evaluation
	Threat Scenario
	Recommended mitigations
	2.1.3 Contracts
	Threat scenarios
	Recommended mitigations

	2.2 Deployment
	2.2.1 Acceptance of Product
	Threat scenarios
	Recommended mitigations

	2.2.2 Functional Testing
	Threat scenario
	Recommended mitigation

	2.2.3 Assurance – Security Testing/Validation
	Threat scenario
	Recommended mitigations

	2.2.4 Configuration Control Board Review
	Threat scenarios
	Recommended mitigations

	2.2.5 Integration
	Threat scenarios
	Recommended mitigations

	2.2.6 Roll-Out of Initial Product
	Threat scenarios
	Recommended mitigations

	2.2.7 Upgrade of Product
	Threat scenarios
	Recommended mitigations

	2.2.8 Product End-of-Life
	Threat scenarios
	Recommended mitigations

	2.2.9 Training/Enablement
	Threat scenarios
	Recommended mitigations

	2.3 Software operations
	2.3.1 User
	Threat scenarios
	Recommended mitigations

	2.3.2 Updates
	Threat scenarios
	Recommended mitigations

	2.3.3 Security/Supply Chain Risk Management Operations
	Threat scenarios
	Recommended mitigations

	3 Appendices
	3.1 Appendix A: Crosswalk between Scenarios and SSDF
	3.2 Appendix B: Dependencies
	3.2.1 Customer Group Dependencies
	3.2.2 Developer Group Dependencies

	3.3 Appendix C: Supply-Chain Levels for Software Artifacts (SLSA)
	3.4 Appendix D: Informative References

