2008–2009
NSTAC Issue Review

NSTAC: Enhancing National Security and Emergency Preparedness through Communications
The President’s
National Security Telecommunications
Advisory Committee

Issue Review

A Comprehensive Review of Issues
Addressed Through May 2009
Table of Contents

Executive Summary ... i

Active Issues
Global Infrastructure Resiliency .. 3
Core Network Physical Security .. 7
Cybersecurity Collaboration .. 13
Identity Management .. 19
Commercial Satellite Communications Security 25
The NSTAC Response to the Sixty-Day Cyber Study Group 29

Standing Issues
Legislation and Regulation .. 35
Research and Development .. 47

Previously Addressed Issues
Automated Information Processing ... 55
Commercial Network Survivability ... 57
Commercial Satellite Security .. 59
Common Channel Signaling .. 63
Electromagnetic Pulse .. 65
Emergency Communications and Interoperability 67
Energy ... 71
Enhanced Call Completion .. 77
Financial Services .. 81
Funding of NSTAC Initiatives .. 83
Globalization ... 85
Industry/Government Information Sharing and Response 87
Industry Information Security .. 91
Influenza Pandemic .. 93
Information Assurance .. 95
Information Sharing/Critical Infrastructure Protection 99
Intelligent Networks .. 103
International Diplomatic Telecommunications 105
International National Security and Emergency Preparedness Telecommunications ... 107
Last-Mile Bandwidth Availability ... 109
National Coordinating Center ... 113
National Information Infrastructure .. 119
National Research Council Report .. 123
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Telecommunications Management Structure</td>
<td>125</td>
</tr>
<tr>
<td>Network Convergence</td>
<td>127</td>
</tr>
<tr>
<td>Network Security</td>
<td>139</td>
</tr>
<tr>
<td>Obtaining Critical Telecommunications Facility Protection During a Civil Disturbance</td>
<td>151</td>
</tr>
<tr>
<td>Physical Security of the Telecommunications Network</td>
<td>153</td>
</tr>
<tr>
<td>Response to September 11, 2001, Terrorist Attacks</td>
<td>157</td>
</tr>
<tr>
<td>Termination of Cellular Networks During Emergency Situations</td>
<td>159</td>
</tr>
<tr>
<td>Telecommunications Industry Mobilization</td>
<td>161</td>
</tr>
<tr>
<td>Telecommunications Service Priority</td>
<td>163</td>
</tr>
<tr>
<td>Telecommunications Service Priority Carrier Liability</td>
<td>165</td>
</tr>
<tr>
<td>Telecommunications Systems Survivability</td>
<td>167</td>
</tr>
<tr>
<td>Underground Storage Tanks</td>
<td>169</td>
</tr>
<tr>
<td>Wireless Security</td>
<td>171</td>
</tr>
<tr>
<td>Wireless Services (Including Priority Services)</td>
<td>175</td>
</tr>
</tbody>
</table>

Appendix A — NSTAC Implementing and Governing Documentation

Charter of the President’s National Security Telecommunications Advisory Committee | A-3

Bylaws of the President’s National Security Telecommunications Advisory Committee | A-5
Executive Order 12382—President’s National Security Telecommunications Advisory Committee | A-9

Appendix B — NSTAC Membership

The President’s National Security Telecommunications Advisory Committee Membership (as of July 8, 2009) | B-3

Appendix C — 2008-2009 NSTAC Executive Report to the President

Executive Report on the 2009 Meeting of the President’s National Security Telecommunications Advisory Committee — May 21, 2009 | C-3
Attachment 1: Report Recommendations to the President from the 2009 Meeting of the President’s National Security Telecommunications Advisory Committee — May 21, 2009 | C-11
Attachment 2: Attendance of Members at the 2009 Meeting of the President’s National Security Telecommunications Advisory Committee | C-18

Appendix D — Acronyms

Acronym List | D-3
Executive Summary

Purpose
This edition of the President’s National Security Telecommunications Advisory Committee (NSTAC) Issue Review provides a comprehensive report on issues addressed by the NSTAC from its first meeting in December 1982 to its most recent meeting on May 21, 2009. For each topic the NSTAC addressed, the Issue Review provides the following information when applicable: names of the investigating groups, length of time required for the investigation, issue background, a synopsis of actions and recommendations, measures resulting from NSTAC recommendations, reports issued, and members of the current/active investigating groups.

Since the completion of the NSTAC 2008-2009 cycle at the 2009 meeting, the Office of the Manager, National Communications System (OMNCS) has worked with the NSTAC, the Department of Homeland Security, and the Executive Office of the President to forward NSTAC recommendations to the President and to Federal Government departments and agencies for comment and consideration. As each of these recommendations moves forward, the Issue Review will annually update the status of each recommendation to provide updated information to industry, Government, and the public on issues vital to national security and emergency preparedness (NS/EP) communications.

Background
On September 13, 1982, President Ronald Reagan issued Executive Order (E.O.) 12382, establishing NSTAC. The committee—a presidentially-appointed advisory body composed of up to 30 senior executive-level representatives from communications; hardware, software and security services; banking; and aerospace companies—provides the President with a unique source of NS/EP communications policy expertise. Several factors influenced the establishment of the NSTAC, including the divestiture of AT&T, increased Government reliance on commercial communications, and the potential impact of new technologies on communications supporting NS/EP requirements. Appendix A of this document includes E.O. 12382, as well as additional NSTAC implementing and governing documents. Appendix B provides a listing of current NSTAC members as of May 21, 2009.

Since its inception, the NSTAC has advised five U.S. presidents on issues pertaining to the reliability and security of communications technologies and their impact on the Nation's ability to protect its critical infrastructures. These issues are vital to America's security and economic interests. Today, members of the communications and information technology industries, as well as the Federal Government, recognize NSTAC as a model for industry/Government collaboration. NSTAC accomplishments include many substantive recommendations to the President leading to enhancements to the Nation's NS/EP communications capabilities and critical infrastructure policies, and increased safeguards to the Nation's communications infrastructure.

During the past 27 years, the NSTAC has worked cooperatively with the National Communications System (NCS)—an interagency consortium of Federal departments and agencies that serves as the focal point for NS/EP communications planning for any crisis or disaster. The OMNCS provides staff support and technical assistance to the committee. By virtue of its mandate to address NS/EP communications issues, the NSTAC’s partnership with the NCS is unique in two ways: (1) it facilitates industry involvement with both the defense and civil agencies comprising the NCS; and (2) it regularly sustains interaction between industry and the NCS member departments and agencies through the National Coordinating Center (NCC); the Communications Information Sharing and Analysis Center (ISAC); the Network Security Information Exchange (NSIE) process; and most recently, through the Communications Sector Coordinating Council, which works in coordination with the Government Coordinating Council on implementation of infrastructure protection activities under the National Infrastructure Protection Plan. NSTAC's perspective and its experiences with a wide range of Federal departments and agencies make the committee a key strategic resource for the President and his national
security and homeland security teams in their efforts to protect our Nation's critical infrastructures in today's dynamic and evolving environment.

Membership on the committee's primary working body—the Industry Executive Subcommittee (IES)—consists of one representative from each company, appointed by his or her NSTAC principal. The IES holds regular meetings to consider issues, analyses, and/or recommendations for presentation to the NSTAC principals (and, in turn, to the President), and assists in the formation of task forces and working groups as directed by the committee to address specific issues requiring in-depth analyses.

From May 2008 to May 2009, the NSTAC operated the following subordinate task forces and working groups:

▶ **The Global Infrastructure Resiliency Task Force (GIRTF)** continued to develop operational recommendations to improve the overall resiliency of the global communications infrastructure by examining the risk to Internet Protocol (IP) NS/EP communications traffic including Voice over Internet Protocol, during times of perceived abnormal conditions or network duress. In addition, the GIRTF completed the *NSTAC Report to the President on National Security and Emergency Preparedness Internet Protocol-Based Traffic*.

▶ **The Core Assurance Task Force** examined infrastructure threats and issues concerning physical security of the core network to determine what, if any, mitigation measures the Government can implement to assure physical security of the core network and its key functions. The group completed the *NSTAC Report to the President on Physical Assurance of the Core Network*, a sensitive report designated For Official Use Only, in November 2008.

▶ **The Cybersecurity Collaboration Task Force** initiated an examination of the need for and feasibility of creating a joint 24/7 public-private operational capability focused on improving the Nation's ability to detect, prevent, mitigate, and respond to significant cyber incidents.

▶ **The Identity Issues Task Force** was established after the November 2008 Principals' Conference Call to explore the role of the Federal Government in Identity Management (IdM) and how the Government could best serve as a catalyst for broad implementation of public-private IdM programs.

▶ **The Satellite Task Force** reviewed and updated the 2004 *Satellite Task Force Report* with an emphasis on the protection of ground infrastructure and mitigation of cyber threats. The updated report, expected in late 2009, will present the NSTAC’s first-ever look at the commercial satellite industry’s concerns regarding cybersecurity.

▶ **The 60-Day Cyber Review Ad Hoc Group** completed and submitted the *NSTAC Response to the Sixty-Day Cyber Study Group* to the Obama Administration in early 2009. In the response, the NSTAC provided recommendations to ensure that Federal Government cybersecurity initiatives are integrated and are coordinated with the private sector.

▶ **The Legislative and Regulatory Task Force** continued to review and analyze legislative and regulatory activities affecting the NS/EP community, and monitor the organizations' roles as they continue to evolve. In addition, the group examined efforts by the Federal Communications Commission (FCC) and Congress regarding nationwide broadband and 911 and E911 developments, as well as the FCC’s Public Safety Spectrum.

Many NSTAC recommendations result in operational activities that enhance NS/EP communications and information systems. For example, in its first set of recommendations to the President, the NSTAC suggested the establishment of the NCC, an industry/Government coordination center for day-to-day operational support to NS/EP communications. In addition, the NSTAC assisted the OMNCS in developing and eventually implementing the Telecommunications Service Priority system, one of the NCS’ most utilized priority service programs. Furthermore, an NSTAC recommendation also resulted in the establishment of separate NSTAC and Government NSIEs, which meet regularly to address the threat of electronic intrusions and software vulnerabilities, as well as to discuss mitigation strategies to protect the Nation’s critical communications and information systems. Finally, the NSTAC recommended the development of an access and credentialing program to assist private sector companies in gaining access to Federal disaster sites following an event of national significance. In response to this recommendation, the Department of Homeland Security developed, in partnership with Federal, State, and local Government entities, as well as a private sector company, an access standard operating procedure (SOP) to ensure that private critical infrastructure responders receive priority access to disaster areas. The access SOP has been adopted by the State of Georgia and has been distributed to a broader community, including the homeland security advisors and the National Association of Regulatory Commissioners.

Appendix C of this document contains the
2009 NSTAC Executive Report to the President, which includes summaries of the May 2009 NSTAC open session, as well as recommendations made to the President during the 2008-2009 NSTAC Cycle (May 2008 to May 2009).

Copies of NSTAC reports pertaining to the issues addressed in this document are available through:

Office of the Manager
National Communications System
Customer Service/Government-Industry Planning and Management Branch
Mail Stop #0615
245 Murray Lane
Washington, D.C. 20598-0615
(703) 235-5525

www.ncs.gov/nstac/nstac.html
nstac1@dhs.gov
Global Infrastructure Resiliency

Investigation Group / Period of Activity

Global Infrastructure Resiliency Working Group
August 2006 – October 2006

Global Infrastructure Resiliency Task Force
May 2007 – November 2008

Issue Background
The increasing dependence on and the vulnerability of the global communications infrastructure highlights the importance of establishing mitigation measures for critical services and protection measures to ensure critical national security and emergency preparedness (NS/EP) communications functions in the event of a catastrophic disruption to any components of the global communications infrastructure.

History of NSTAC Actions and Recommendations
The President’s National Security Telecommunications Advisory Committee (NSTAC) formed the Global Infrastructure Resiliency Working Group in August 2006 in response to a request from the National Security Council to develop operational recommendations to improve the overall resiliency of the global communications infrastructure. The group completed the NSTAC Report to the President on Global Infrastructure Resiliency in October 2006; a sensitive report designated For Official Use Only (FOUO).

Subsequently the NSTAC established the Global Infrastructure Resiliency Task Force (GIRTFT) in May 2007, to address requests from the Department of Defense (DOD) and the Executive Office of the President (EOP). Specifically, DOD asked for an examination of the risk to national security associated with the provisioning of network management services to domestic service providers from international network operations centers (NOC). As a result, the GIRTFT reviewed relevant operations practices associated with NOCs, examined risks inherent in such operations, and outlined the steps that service providers have taken to manage those risks. In February 2008, the task force completed the NSTAC Report to the President on Network Operations Centers, also designated FOUO, to address DOD’s concerns.

During the 2007 NSTAC annual meeting, the EOP asked the NSTAC to examine the risk, if any, to Internet Protocol (IP) NS/EP communications traffic including Voice over Internet Protocol, during times of perceived abnormal conditions or network duress. Specifically, the White House requested that the committee determine if network degradation or disruption could affect the receipt or delivery of NS/EP traffic and, if so, asked that the NSTAC provide recommendations regarding measures to ensure the delivery of IP-based NS/EP traffic during times of network duress. To conduct its analysis, the task force examined how service providers transport IP-based traffic across their networks and how they shared data regarding their ability to manage traffic end-to-end. The GIRTFT also examined how carriers and service providers offer managed services to meet the requirements of their enterprise customers, including some NS/EP authorized users. The task force completed the NSTAC Report to the President on National Security and Emergency Preparedness Internet Protocol-Based Traffic in November 2008.

Based on the GIRTFT’s analysis, the NSTAC recommended that the President:

- In the short term, establish a policy that requires Federal departments and agencies to:
 - Ensure their enterprise networks are properly designed and engineered to handle high traffic volume;
 - Manage traffic through quality of service programming in its routers to prioritize traffic, including NS/EP traffic; and
 - Expand the use of managed service agreements to provision NS/EP services within the new IP-based environment.
In the long term, require that Federal departments and agencies remain actively involved in standards development of priority services on IP-based networks by supporting efforts to:

- Provide adequate funding that will be used to develop timely solutions across all technology platforms; and

- Commit appropriate resources to actively participate in and lead the global standards bodies’ efforts to address NS/EP IP-based priority services.

Petition the Federal Communications Commission for a declaratory ruling to confirm that network service providers may lawfully provide IP-based priority access services to NS/EP authorized users.

Actions Resulting from NSTAC Recommendations

Based on the findings of the *NSTAC Report to the President on Global Infrastructure Resiliency*, the NCS has participated in multiple cross department and agency efforts to develop protection programs and Concepts of Operations plans and procedures to ensure the service continuity of the global communications infrastructure.

Reports Issued

- *NSTAC Report to the President on Global Infrastructure Resiliency*, October 2006.

2008–2009 Global Infrastructure Resiliency Task Force Membership

- **Sprint Nextel Corporation**
 Ms. Alison Growney, Vice Chair

- **Bank of America Corporation**
 Mr. Roger Callahan

- **The Boeing Company**
 Mr. Robert Steele

- **Computer Sciences Corporation**
 Mr. Guy Copeland

- **Microsoft Corporation**
 Ms. Cheri McGuire

- **Nortel Networks Corporation**
 Dr. Jack Edwards

- **Qwest Communications International, Incorporated**
 Ms. Kathryn Condello

- **Raytheon Company**
 Mr. Williams Russ

- **Science Applications International Corporation**
 Mr. Hank Kluepfel

- **Telcordia Technologies, Incorporated**
 Ms. Louise Tucker

- **Verizon Communications, Incorporated**
 Mr. Jim Bean

- **Other Global Infrastructure Resiliency Task Force Industry Participants**
 - **AT&T, Incorporated**
 Dr. Bobbi Bailey
 - **Bank of America Corporation**
 Mr. Larry Schaeffer
 - **Computer Sciences Corporation**
 Ms. Janet Gunn
 - **George Washington University**
 Dr. Jack Oslund
Juniper Networks, Incorporated
Mr. Tom Van Meiter

Microsoft Corporation
Mr. Phillip Reitinger

Qwest Communications International, Incorporated
Mr. R. David Mahon
Mr. Thomas Snee

Renesys Corporation
Dr. Earl Zmijewski

Sprint Nextel Corporation
Ms. Maria Cattafesta
Mr. John Stogoski

Verisign, Incorporated
Mr. William Gravell
Mr. Tony Rutkowski

Verizon Communications, Incorporated
Mr. Marcus Sachs
Mr. Frank Sally
Mr. Michael Hickey

Global Infrastructure Resiliency Task Force

Government Participants

Department of Defense
Mr. R.J. Arneson
Mr. Anthony Bargar
Ms. Catherine Creese
Ms. Marna Harris
Mr. Herb Herrmmann
Capt. John Kennedy
Mr. Mark Lauver
Ms. Hillary Morgan
Mr. Dan Wenk

Department of Homeland Security
Ms. Sue Daage
Mr. Vern Mosley
Mr. An Nyguen
Mr. Frank Suraci
Mr. Will Williams
Core Network Physical Security

Investigation Group / Period of Activity

Plans Working Group
December 1990 – September 1991

Vulnerabilities Task Force
May 2002 – February 2003

Trusted Access Task Force
April 2003 – April 2004

Core Assurance Task Force
July 2008 – November 2008

Issue Background

Technological advances brought upon by the convergence of wireless, wireline, and Internet Protocol networks are changing the common definition of “core network.” Core network elements consist of those components that, if damaged, could result in a widespread impact to national security and emergency preparedness (NS/EP) communications. Such threats include: natural or environmental threats such as a hurricane or earthquake; intentional or malicious threats including a targeted explosive attack; threats of collateral damage such as a consequence related to an intentional or malicious event; unintentional or accidental threats that include human error. These threats impact individual elements and sectors of the telecommunications network in different ways, with varying results, and all have the potential to negatively impact the core network.

The damage caused by the terrorist attacks of September 11, 2001, and the subsequent flooding and hurricane force winds of Hurricane Ike in 2008 demonstrate the significant impact that physical destruction of certain core network assets and functions can have on NS/EP communications, as well as on services that are dependent on the entire communications infrastructure. While network infrastructure is designed to ensure redundancy and resiliency in the event of an attack or natural disaster, the communications network remains vulnerable to attack. Therefore, the NS/EP communications, intelligence, and defense communities, in addition to agencies across the Federal Government, remain interested in and committed to protecting the physical network.

History of NSTAC Actions and Recommendations

On December 13, 1990, the NSTAC established the Plans Working Group (PWG) to examine the physical security of the public switched network. The PWG coordinated with the National Communications System (NCS), Office of the Joint Secretariat to investigate physical security of the telecommunications infrastructure due to issues surfaced by a National Research Council report on the growing vulnerability of the Nation’s communications network. The study included results from a questionnaire given to the National Coordinating Center’s industry representatives on physical security policy, operational procedures, and methods, and also documented past NCS efforts regarding physical security of NS/EP telecommunications facilities, sites, and assets and relevant conclusions and recommendations of those past efforts. The study concluded that current industry/Government activity and past NCS documents demonstrate that industry and Government had made substantial progress in addressing the physical security of telecommunications facilities, sites, and assets.

In the aftermath of the September 11, 2001, terrorist attacks, the NSTAC Principals addressed physical security concerns of the telecommunications infrastructure during the business and executive sessions of the April 2003 NSTAC annual meeting. As a result, the NSTAC established the Vulnerabilities Task Force (VTF) to examine the potential risks associated with the concentration of critical telecommunications assets in telecom hotels, Internet peering points, and vulnerabilities involving equipment chain of control and trusted access procedures to telecommunications facilities. The VTF concluded that the dispersal and existence of multiple facilities reduced the risk to loss of service caused by the loss of any one facility. The task force acknowledged that
the telecommunications infrastructure remained inherently vulnerable to physical attack, and that the physical destruction of individual critical telecommunications facilities could disrupt service at the local level and restrict access to the infrastructure.

The VTF addressed the Government’s concern that the telecommunications infrastructure may be especially vulnerable because trusted physical access is granted to individuals requiring entrance to sites where critical telecommunications assets are concentrated. Owners utilize multiple methods to secure critical sites and equipment with electronic locks, padlocks, fences, alarms, security cameras. However, access control remains a critical issue as the loss of, or damage to, a site housing numerous critical telecommunications assets could adversely impact local or “last-mile” NS/EP services. Primary factors influencing the efficacy of access control procedures include malicious intent, insider threat, the lack of a standard personal identification and background check capabilities, and a lack of universally-applied access control procedures and best practices.

Furthermore, the VTF also addressed chain of control issues regarding the security of products and services delivered to critical locations. The task force concluded that, although security will remain a priority, no policy actions were necessary at that time. In response to the VTF analysis, and to mitigate any risks associated with concentration of assets, the NSTAC presented four consecutive reports to the President titled Chain of Control, Telecom Hotels, Trusted Access, and Internet Peering Security with specific recommendations on measures to be undertaken to secure the telecommunications industry.

In direct response to the Vulnerabilities Task Force Report: Trusted Access, the NSTAC established the Trusted Access Task Force (TATF) to examine how industry and the Government can work together to address concerns associated with implementing a national security background check program for access to key facilities. The TATF further examined concerns that communications infrastructure may be vulnerable because trusted physical access is granted to individuals who require access to the site without ensuring the individual does not pose a threat to the facility or infrastructure. The task force proposed that a national standard for personnel screenings using Federal databases, such as the program used by the Department of Homeland Security’s (DHS) Transportation Security Administration (TSA), may benefit industry in mitigating threats to the telecommunications infrastructure.

The TATF also examined the need for a standard, industry-wide, certificate-based picture identification (ID) card. The TATF stated that such an ID would further solidify the security of the Nation’s telecommunications infrastructure, and assist in the identification of employees who have passed the national screening. In an emergency or crisis, the credential will also expedite recovery efforts by helping to easily identify personnel who are cleared to assist the site.

During the May 2004 annual meeting, Mr. Robert Liscouski, then Assistant Secretary for Infrastructure Protection, DHS, emphasized the importance of the group’s work and commented on the need for short-term initiatives that could be undertaken to increase security at numerous upcoming National Special Security Events (NSSE), and could also be used as the basis for long-term perimeter access guidelines. As a result, the TATF, with the assistance of the National Coordinating Center’s (NCC) Information Sharing and Analysis Center (ISAC) member companies, proposed the establishment of a pilot program to use Federal terrorist lists/Government databases, to pre-screen a small group of industry employees who may need access to physical sites or critical information concerning NSSEs and associated critical facilities. The TATF deemed the United States Secret Service (USSS) the most appropriate resource for conducting industry screenings on the specified personnel due to their role in planning NSSEs. The pilot screening program produced a list of key lessons learned, as well as several human resources concerns from industry.
Based on the TATF’s analysis, the NSTAC recommended that the President direct the appropriate departments and agencies to:

- Coordinate with industry to:

 - Implement and support a standardized screening process for industry to voluntarily conduct screenings on persons who have regular and continued unescorted access to critical telecommunications facilities, such as switching facilities, telecommunications employees and vendors, suppliers, and contractor staff, including:

 - Modeling such a program after the current TSA program by including different relative background investigation levels for various facilities and personnel types;

 - Partnering with DHS, through TSA, upon request from industry to conduct screenings for industry personnel working at critical private telecommunications facilities; and

 - Working with the Network Reliability and Interoperability Council to develop industry best practices defining specific criteria for determining which telecommunications employees should be subject to screenings.

 - Make available a standard tamper-proof, certificate-based picture identification technology to enable the positive identification of screened individuals at critical sites and to support both physical and logical access for such individuals to critical telecommunications facilities and the networks and information concerning them by building on the ongoing work of the General Services Administration’s Federal Identity Credentialing Committee.

 - Build on the recommendations in the NCC ISAC report, Preparing for a National Special Security Event, to develop a national plan for controlling access at the perimeter of an NSSE or a disaster area. To facilitate the development of a national perimeter access plan to be incorporated in the National Response Plan, the Government should continue to support the screening program coordinated by the NCC ISAC with screenings facilitated by DHS and the USSS.

- Partner with the ISACs across infrastructures to implement screening, credentialing, and access control policies mirroring those recommended for the telecommunications infrastructure for all critical infrastructures.

Based on the on-going concerns associated with the physical protection of networks and key elements, the NSTAC formed the Core Assurance Task Force (CATF) in response to a request from the Executive Office of the President (EOP). The EOP asked the NSTAC to examine infrastructure threats and issues concerning physical security of the core network to re-educate Government stakeholders and determine what, if any, mitigation measures the Government can implement to assure physical security of the core network and its key functions. The CATF developed the NSTAC Report to the President on Physical Assurance of the Core Network in November 2008 and the NSTAC Report to the President on Physical Assurance of the Core Network Addendum in February 2009. Both documents are sensitive reports designated For Official Use Only.

Actions Related to NSTAC Recommendations

In accordance with the NSTAC’s recommendations and the NCC’s Preparing for a National Special Security Event Report, the Government implemented a pilot program to coordinate industry access for the 2005 Presidential Inauguration. In a related effort, in early 2006, the NCS developed, in partnership with Federal, State, and local Government entities, as well as a private sector company, an access standard operating procedure (SOP) to ensure that private critical infrastructure responders have priority access to disaster areas. The access SOP has been adopted by the State of Georgia with other states following its example.

In addition, the State of Georgia SOP has been distributed to a broader community, including the Homeland Security Advisors and the National
Association of Regulatory Commissioners. Currently, a number of State and local governments have begun developing procedures for granting access into disaster areas by private sector organizations. For example, the State of Texas passed legislation to create a Communications Coordination Group, a public-private partnership group, that will update and implement communications plans during a disaster, with a concentration on public access.

The NCC has received copies of these plans from several States and is currently working with the Federal Emergency Management Agency (FEMA) to identify other State plans. This is an iterative process that requires continuous interaction between Federal Government and various levels of regional and State municipalities. The NCS also sends representatives to quarterly Regional Interagency Steering Committee meetings in the FEMA regions to complete a survey of the States on their credentialing programs and access SOPs.

Reports Issued

NSTAC Report to the President on Physical Assurance of the Core Network, January 2009.

Core Assurance Task Force Membership

Verizon Communications, Incorporated
Mr. Mike Hickey, Chair

Microsoft Corporation
Mr. Jerry Cochran, Vice Chair

United States Telecom Association (US Telecom)
Mr. Robert Mayer, Vice Chair

AT&T, Incorporated
Ms. Rosemary Leffler

Bank of America Corporation
Mr. Larry Schaeffer

The Boeing Company
Mr. Robert Steele

Computer Sciences Corporation
Mr. Guy Copeland

Intelsat, Ltd.
Mr. Sterling Winn

Juniper Networks, Incorporated
Mr. Robert Dix

Motorola, Incorporated
Mr. Michael Alagna

National Cable and Telecommunications Association
Mr. Andy Scott

Nortel Networks Corporation
Dr. Jack Edwards

Qwest Communications International, Incorporated
Ms. Kathryn Condello

Raytheon Company
Mr. Frank Newell

Science Applications International Corporation
Mr. Henry Kluepfel
Telecordia Technologies, Incorporated
Ms. Louise Tucker

Teledesic Corporation
Mr. Douglas Carter

Tyco Electronics Ltd.
Mr. Greg Polk

Unisys Corporation
Mr. Paul Nicandri

VeriSign, Incorporated
Mr. William Gravel

Other Core Assurance Task Force Participants

AT&T, Incorporated
Mr. Jim Coble
Mr. Thomas Hughes
Ms. Julie Thomas

The Boeing Company
Mr. William Reiner

CTIA – The Wireless Association
Mr. Rick Kemper

Embarq Corporation
Mr. John Cholewa

LinQuest Corporation
Mr. Rich Gobbi

Nortel Networks Corporation
Mr. Dragan Grebovich

Qwest Communications International, Incorporated
Mr. Daniel Gonzalez

Satellite Industry Association
Ms. Patricia Cooper

Science Applications International Corporation
Mr. Steve Lines
Mr. Neil Rondorf
Mr. Hart Rossman

Time Warner, Incorporated
Mr. Brian Allen

Tyco Electronics Ltd.
Mr. Jim Herron

Unisys Corporation
Ms. Tina Williams
Mr. Paul Nicandri

United States Telecom Association (US Telecom)
Mr. Anthony Jones
Mr. Walter McCormick
Mr. Tom Soroka

VeriSign, Incorporated
Mr. Ramses Martinez
Mr. Ken Silva

Verizon Communications, Incorporated
Mr. James Bean
Mr. Jack Farris
Mr. Michael Mason
Mr. Marcus Sachs
Mr. Todd Schulman

Unaffiliated
Mr. Harold Dayton
Dr. Jack Oslund

Core Assurance Task Force Government Participants

Department of Defense
Mr. James Cassell
Ms. Catherine Creese
Mr. Michael Green
Mr. Richard Hale
Mr. James Hunter
Mr. Eric Jackson
Mr. John Lerner
Mr. Timothy Lister
Ms. Hillary Morgan
Mr. Fernando Perez
Mr. Randall Tanaka
Mr. Daniel Wenk
Ms. Kathleen Young
Department of Homeland Security
Ms. Kathleen Blasco
Ms. Sue Daage
Mr. Jeremy Johnson
Mr. Will Williams

National Aeronautics and Space Administration
Mr. James Schier

Office of Science and Technology Policy
Mr. Brian Hutchinson
Mr. Rich Straka
Cybersecurity Collaboration

Investigation Group / Period of Activity

Network Security Task Force
February 1990 – August 1992

Network Security Group
December 1994 – April 1997

Information Sharing/Critical Infrastructure Protection Task Force
September 1999 – March 2002

Next Generation Network Task Force
May 2004 – May 2006

National Coordinating Center Task Force
December 2004 – July 2007

International Task Force
May 2006 – August 2007

Cybersecurity Collaboration Task Force
October 2008 – May 2009

Issue Background

Over the last 20 years, the Nation has become increasingly dependent on information technology (IT), interacting and communicating seamlessly across vast networks traversing the globe. This reliance on interconnected IT systems also exposes the Nation to significant cyber threats and vulnerabilities, placing our critical infrastructure and key resources (CI/KR) at risk. Today, an adequate national operational capability to respond to the current growing cyber threat does not exist. Cybersecurity issues have been addressed piecemeal in varying ways by different government entities at the Federal, State, local, tribal, and territorial level; private companies and industry organizations; and academic institutions. Although these groups have initiated and sustained various levels of collaboration, cyber threat and vulnerability concerns require an even more systematic, integrated approach.

Recognizing the growing interdependencies between cybersecurity and CI/KR, these groups are addressing cybersecurity from the perspective of national security, rather than focusing on the constituent technology. However, while these efforts are works in progress; the need for an increasingly collaborative and systematic approach remains.

History of NSTAC Actions and Recommendations

Government and private sector subject matter experts recognize the urgent need for and value of a public-private sector collaborative cyber detection, prevention, mitigation, and response (DPMR) capability. In February 1990, the NSTAC established the Network Security Task Force (NSTF) in response to Government concerns about potential disruption of national security and emergency preparedness (NS/EP) telecommunications through network software manipulation. In its October 1990 *Network Security Scoping Task Force Report: Report of the Network Security Task Force*, the NSTF found that major responsibility for network software security lies with individual service providers and provided guidance for service providers that would enhance the security of their own networks. The report also stated that a broader information flow among carriers and suppliers nationwide would assist the carriers to improve their network security.

The NSTF underwent a series of re-scoping activities, and in accordance with Industry Executive Subcommittee guidelines, was renamed the Network Security Group (NSG) in December 1994. In September 1996, the NSG sponsored the Network Security Research and Development (R&D) Exchange. The event’s purpose was to analyze R&D activities ongoing in both the public and private sectors and to address issues of authentication, intrusion detection, and access control from the capabilities management perspective.

During the May 16, 2000, NSTAC annual meeting, Mr. Richard Clarke, then National Coordinator for Security, Critical Infrastructure Protection, and Counter-Terrorism, National Security Council, requested industry advice and recommendations for revision of the *National Plan for Information Systems*.
Protection (National Plan). In 2001, the NSTAC’s Information Sharing/Critical Infrastructure Protection Task Force (IS/CIPTF) developed The NSTAC’s Response to the National Plan that highlighted the NSTAC’s work in several issue areas that were important to the main objectives of the National Plan. Specifically, the task force documented NSTAC findings related to the three broad objectives of Version 1.0 of the National Plan—Prepare and Prevent, Detect and Respond, and Build Strong Foundations—that should be reflected in Version 2.0 of the plan. In addition, the NSTAC proposed that a new broad objective—International Considerations—be included in the plan’s Version 2.0. The NSTAC approved the response, and forwarded its recommendation to the President. This information was also shared with the Information and Communications (I&C) Sector Coordinators: the U.S. Telecom Association, the Telecommunications Industry Association, and the Information Technology Association of America; and the I&C Sector Liaison from the National Telecommunications and Information Administration (NTIA).

Following the May 19, 2004, NSTAC annual meeting, the NSTAC Principals established the Next Generation Networks Task Force (NGNTF), to conduct an examination of NS/EP requirements and emerging threats on next generation networks (NGN). As an initial step, the NGNTF assembled a group of subject matter experts (SMEs) and government stakeholders in August 2004 to determine how best to meet the task force’s significant objectives. As a result of the meeting, the group identified five fundamental areas of examination: (1) NGN description; (2) NGN service scenarios and user requirements; (3) end-to-end services provisioning; (4) NGN threats and vulnerabilities; and (5) incident management on the NGN. In response to government stakeholder questions during the meeting, the NGNTF agreed to undertake a quick turn around report on the near term actions that could be undertaken to reduce the impact of network transition issues on NS/EP communications and to identify areas where immediate government involvement was needed. The NSTAC submitted the Next Generation Networks Task Force Near Term Recommendations Working Group Report to the President in March 2005.

In 2006, The NSTAC Report to the President on the National Coordinating Center (NCC) summarized the NCC’s primary functions, including NS/EP and information sharing and analysis. In order to facilitate information sharing, the NSTAC recommended establishing a joint coordination center where the public and private sectors could share cybersecurity information. The NSTAC issued the following recommendations:

- A joint coordination center for industry and Government should be established, consisting of a cross-sector industry/Government facility with an around-the-clock watch, that would stand up to full strength during emergencies. Such a center would improve communications between industry and Government as well as among industry members, and would incorporate and be modeled on the NCC.

- The center should be a Government-funded, appropriately equipped facility, manned jointly by experts from all key sectors. In a fully converged NGN environment, everything will be interconnected and interdependent to a greater degree, and thus means of coordinating among all key sectors must exist. Physically collocated, joint staffing is vital to achieve the high level of interpersonal trust needed for sharing sensitive specific information and to achieve the level of mutual credibility required in a fast-paced decision-oriented environment. It should provide the full set of planning, collaboration, and decision-making tools for those experts to work, whether together as a whole or in focused subgroups.

The NSTAC recognized that some progress has occurred to enhance cybersecurity collaboration, such as through the creation of the IT and Communications Sector and Government Coordination Councils. However, the NSTAC determined that operational collaboration and coordination between the Federal Government and private sector must improve due to the perceived urgent and growing need to improve upon
coordination of existing United States and international cyber incident capabilities in both public and private sectors.

Following the October 21, 2004, NSTAC Principals’ Conference Call, the committee established the National Coordinating Center Task Force (NCCTF) to examine how best to balance both traditional network and cyber concerns and the changing national security environment to include homeland security concerns within the NCC moving forward. Based on the NCCTF’s analysis of issues facing the NCC, the NSTAC provided seven recommendations to the President in the *NSTAC Report to the President on the National Coordinating Center (NCC)*.

In response to concerns regarding international NS/EP communications expressed during the 2004 NSTAC annual meeting, the NSTAC established the International Task Force (ITF) to examine international incident management and operational protocols, in addition to the policy frameworks related to the use of NS/EP services over the global communications infrastructure. The ITF concluded its study with the *Report to the President on International Communications*. The report included a recommendation for the President to task the Department of Homeland Security (DHS) to coordinate the development of a global framework to address physical and cyber events that would disrupt the availability of critical global infrastructure services.

In 2008, the NSTAC re-examined the 2006 *Next Generation Networks Task Force Report* to identify and review current Federal Government efforts that address issues in the report’s recommendations; and identify gaps among the 2006 recommendations, current NGN needs related to the provisioning of NS/EP communications, and existing Federal Government activities. The NSTAC also sought to provide follow-up recommendations to ongoing work and to enhance future Federal NGN NS/EP activities and implementation actions.

The NSTAC established the Cybersecurity Collaboration Task Force (CCTF) in November 2008 at the request of the Executive Office of the President (EOP) to examine the issue of cybersecurity collaboration, and explore the need for and feasibility of creating a joint public-private capability. Based upon the CCTF’s research and analysis of previous NSTAC reports, as well as recent interviews with subject matter experts, the task force’s primary finding was that the integrated, operational information sharing and cyber response mechanisms needed to adequately address the cyber threat do not exist today. The most significant gap is the lack of an operational mechanism for the Government and private sector to collaborate and coordinate during cyber events.

In the NSTAC Report to the President on Cybersecurity Collaboration, the NSTAC recommended the President direct the establishment of a joint, integrated public-private, 24/7 operational cyber incident DPMR capability to address cyber incidents of national consequence. This recommendation proposes establishing a Government-sponsored Joint Coordinating Center (JCC) for public and private sector representatives from various critical infrastructures and key resources sectors following the aggressive, phased approach described in the report. Specifically, the JCC would initially build upon the current coordination/collaboration capabilities of the National Coordinating Center and the U.S. Computer Emergency Readiness Team (US-CERT), and incorporate other existing cyber incident monitoring and response public-private entities. The JCC capability should be located in a Government facility with around-the-clock operations and supporting tools and collaboration capabilities. The JCC’s primary mission would focus on robust information-sharing for developing and sharing cyber situational awareness, and would institutionalize the time-sensitive processes and procedures to detect, prevent, mitigate, and respond to cyber incidents of national consequence.

Actions Resulting from NSTAC Recommendations

The NCS initiated numerous efforts to address the recommendations in the *NSTAC Report to the President on the National Coordinating Center (NCC)*. Most significantly, the DHS Office of Cybersecurity and Communications established a “tiger team” to examine the consolidation of the NCC, the US-CERT, and the IT-Information...
Sharing and Analysis Center (ISAC), as the NSTAC recommended. The NCS has since located the NCC in the same building as the US-CERT.

The NCS Committee of Principals formed the International Communications Working Group (ICWG) to examine issues raised by and relating to the NSTAC Report to the President on International Communications, and to work in concert with the private sector to assess how to implement NSTAC recommendations. The ICWG performed a gaps analysis of the international communications efforts underway and identified existing joint-examination mechanisms currently in place for responding to all-hazard attacks. The ICWG also met with key industry representatives from the NSTAC ITF to clarify the intent of the report’s recommendations. The ICWG delivered the International Communications Working Group Response to the National Communications System Committee of Principals, in March 2009.

Reports Issued

The NSTAC’s Input to the National Plan: An Assessment of Industry’s Role in National Level Information Sharing, Analysis, and Dissemination Capabilities for Addressing Cyber Crises, November 2001.

NSTAC Report to the President on the National Coordinating Center (NCC), May 2006.

NSTAC Report to the President on International Communications, August 2008.

Cybersecurity Collaboration Task Force Membership

Juniper Networks, Incorporated
Mr. Robert Dix, Chair

Lockheed Martin Corporation
Lt. Gen. Charles Croom (U.S. Air Force Ret.), Vice Chair

AT&T, Incorporated
Ms. Julie Thomas

Bank of America Corporation
Mr. Larry Schaeffer

The Boeing Company
Mr. Bob Steele

Computer Sciences Corporation
Mr. Guy Copeland

Harris Corporation
Mr. Richard White

Microsoft Corporation
Ms. Cheri McGuire

Nortel Networks Communications
Dr. Jack Edwards

Qwest Communications International, Incorporated
Ms. Kathryn Condello

Raytheon Company
Mr. Bill Russ (U.S. Army Ret.)

Rockwell Collins, Incorporated
Mr. Ken Kato

Telcordia Technologies, Incorporated
Ms. Louise Tucker

VeriSign, Incorporated
Mr. William Gravell

Verizon Communications, Incorporated
Mr. Michael Hickey
Cybersecurity Collaboration Task Force

Industry Participants

AT&T, Incorporated
Ms. Rosemary Leffler
Mr. John Markley

The Boeing Company
William Reiner

Computer Sciences Corporation
Mr. Kenneth Thomas

Deloitte & Touche LLP
Col. Gary McAlum (Ret.)

George Mason University Law School
Critical Infrastructure Protection
Ms. Maeve Dion

Harris Corporation
Ms. Tania Hanna

Mitre
Mr. Scott Tousley

Netmagic Associates LLC
Mr. Tony Rutkowski

Lockheed Martin Corporation
Dr. Eric Cole
Mr. Arnie “AJ” Jackson
Mr. James “Tom” Prunier

Qwest Communications International, Incorporated
Mr. Curtis Levinson

Raytheon Company
Mr. Charles McCaffrey

Science Applications International Corporation
Mr. Hank Kluepfel
Mr. Steve Lines

Sprint Nextel Corporation
Ms. Allison Grownery

Unisys Corporation
Ms. Patricia Titus

Valley View Corporation
Mr. Dan Bart

Verizon Communications, Incorporated
Mr. Jim Bean
Mr. Marcus Sachs

Cybersecurity Collaboration Task Force

Government Participants

Department of Defense
LTC Susan Camoroda, USA

Department of Homeland Security
Ms. Kathleen Blasco
Mr. Kevin Dillon
Mr. Ryan Higgins
CAPT Alice Rand, USN
Mr. Matt Shabat
Ms. Jordana Siegel
Mr. Will Williams
Ms. Chris Watson

Federal Communications Commission
Mr. Gregory Cooke
Mr. Richard Hovey
Identity Management

Investigation Group / Period of Activity

Information Infrastructure Group
April 1997 – September 1999

Vulnerabilities Task Force
May 2002 – February 2003

Next Generation Networks Task Force
May 2004 – May 2006

Research and Development Task Force
July 2003 – Present

Identity Issues Task Force
October 2008 – May 2009

Issue Background

Federal, State, and local governments, international bodies, private sector organizations, and individual end users depend on robust, reliable, and functional communications networks for national security and emergency preparedness (NS/EP) functions, as well as other business and personal needs. The Government and private sector rely upon these networks increasingly for daily transactions (such as the provision of healthcare, emergency response, commercial, and e-Government services). These networks—and the governments, people, devices, and the applications that rely on them—are under daily and sustained attack. These attacks threaten core U.S. national communications objectives, including national security, law enforcement, public safety, and protection of intellectual property, as well as impair the availability and integrity of communications networks for NS/EP.

The increasing dependence on communications networks for conducting Governmental, commercial, and social transactions requires the establishment of identity through digital data and potentially physical means. Identity management (IdM) provides unique characteristics to any entity, whether people, objects, devices, or organizations. Trusted, strong identification of users, devices, and communications service providers has not been universally adopted in cyberspace. This lack of trusted identification enables harmful and/or malicious activity and diminishes NS/EP capabilities, endangering national and homeland security, in addition to individual privacy and security. Private sector owners and operators of the Nation’s information technology (IT) and communications infrastructure, along with all levels of Government, have a vested interest in identifying and deploying solutions to help the Nation reduce the occurrence and impact of malicious activity on communications systems.

History of NSTAC Actions and Recommendations

In response to growing concerns about the need for improved authentication capabilities on telecommunications networks, the NSTAC has emphasized the importance of strong IdM in its Research and Development Exchange efforts, and other task forces, including the Electronic Commerce Task Force, the Impact Task Force, and the Vulnerabilities Task Force. The identification of IdM as a component issue of telecommunications, coupled with the growing reliance of the Government and private sector on the Internet and other cyber-based communications systems, led to the creation of the Identity Issues Task Force (IdITF).

In its June 1999 Report on the NS/EP Implications of Electronic Commerce, the NSTAC identified the need for public and Government confidence in the technology used for e-Commerce, particularly establishment of strong identity authentication protocols. The report highlighted that the success of e-Commerce depended upon assurance of the identity of a subject or object to ensure the validity of identity claims.

In May 2000, the NSTAC addressed the role of identity authentication in its Information Technology Progress Impact Task Force Report on Convergence. The NSTAC identified the necessity of strong authentication mechanisms in the Government Emergency Telecommunications Service (GETS). The report also identified the inherent vulnerabilities of the current GETS authentication measures which rely only upon knowledge of the user rather than a
physical token, or cryptographic signatures such as Public-Key Infrastructure (PKI) technology. The report suggested the need for more robust identity authentication measures.

The NSTAC continued its work on identifying the scope of IdM needs in the 2003 *Vulnerabilities Task Force Report: Trusted Access*. The NSTAC notes that beyond network-based concerns, the ability to identify persons and objects for physical access control, is a critical component needed in IdM protocols. Accordingly, the NSTAC’s perspective on IdM applies to both the physical and logical domains.

Based on the findings in the *Vulnerabilities Task Force Report: Trusted Access*, the NSTAC concluded that:

- Currently there is neither a national standard nor capability available for companies to conduct background checks, screening, criminal investigations, and identity verification procedures for key personnel requiring access to critical communications facilities or job categories;

- The Federal Government, in conjunction with State and local governments and industry, could develop guidance for the creation of national standards for national security background checks and identity verification procedures for key personnel;

- Personal ID capabilities can be enhanced through use of a “tamper-proof,” certificate-based, picture ID that is widely acknowledged as a secure means of identification; and

- The issuance of national identification cards for use during disaster response activities may not be viable because telecommunications companies cannot guarantee all required response personnel for each unique emergency would possess these cards.

Accordingly, the NSTAC recommended that the President:

- Lead the research and development and standards’ body’s efforts to make available a standard “tamper-proof,” certificate-based, picture identification technology to enable the positive identification of key individuals at critical sites.

Following this study, the 2003 NSTAC Research and Development (R&D) Exchange, called for R&D work in emerging areas including IdM and access control. The NSTAC recognized that the expanding reliance on networks and communications requires identification of all users, through both physical and logical means.

In 2006, the NSTAC recommended in its *Next Generation Networks Task Force Report*, that the President should direct the Office of Management and Budget (OMB) and the Department of Homeland Security to work with the private sector to build a federated, interoperable, survivable, and effective identity management framework.

During the September 2008 Research and Development Exchange Workshop, *Evolving National Security and Emergency Preparedness Communications in a Global Environment*, the NSTAC found that key technical and policy capabilities could improve IdM for NS/EP communications, including the development of a holistic IdM infrastructure, improved interoperability under a federated identity system, and the development of scalable and extendible technical architectures. The NSTAC identified five key technology areas for improving IdM for NS/EP communications:

- Biometrics R&D infrastructure to drive increases in both performance and function;

- Technologies for establishing interoperability and trust such as common credentials, ease-of-use features, and capabilities that address IdM beyond individuals’ identity (such as applications, devices, service providers, identity providers);
Development of an identity federation for developing a common rule set that enables identities issued by different processes and places to be recognized and treated equally;

Discovery of authoritative identity information and identity providers on global-scale; and

New scalable/extendible architectures.

Participants in the 2008 R&D Exchange identified various impediments to implementing effective and comprehensive IdM capabilities, including issues of trust, technology gaps, social and cultural hesitancy to broad IdM, and policy gaps. The 2009 NSTAC Report to The President on Identity Management Strategy identified these impediments again, citing the four main impediments to IdM as: (1) social concerns, specifically regarding privacy and the role of Government in IdM; (2) commercial factors, including the need for a strong business model and demonstration of economic incentives; (3) technological factors, specifically the lack of cross-cutting interoperable standards development and implementation; and (4) Government factors, including the absence of a central IdM governance process across the Federal Government.

The 2008 R&D Exchange participants recommended that:

- The President publish a National Security Presidential Directive to create an IdM governance process across the federal Government that includes all necessary coordination, outreach, Government-industry collaboration activities.

- The Office of Science and Technology (OSTP) coordinate with the OMB to issue policy guidance for the next fiscal year which provides incentives for synergistic participation in standards bodies as a stipulation for IdM R&D funding; and

- The President, within the suggested government-wide IdM governance framework, and responsive to such authorities, direct the National Security Agency to facilitate the rules and processes for implementing IdM solutions.

After the November 2008 Principals’ Conference Call, the NSTAC established the IdITF to explore the role of the Federal Government in IdM and how the Government could best serve as a catalyst for broad implementation. The content of the NSTAC’s Report to the President on Identity Management Strategy, is consistent with and serves as an extension of the NSTAC’s work on the NSTAC Response to the Sixty-Day Cyber Study Group review of the Nation’s cybersecurity efforts. Based upon the research and analysis of the Identity Issues Task Force, the NSTAC recommended that the President:

- Demonstrate personal national leadership in IdM to positively influence the national culture, attitude, and opinion toward IdM;

- Charter a national IdM office under specifically appointed and dedicated leadership, in the Executive Office of the President;

- Direct the newly created office to develop a coordinated programmatic agenda to implement a comprehensive IdM vision and strategy to address, at a minimum, four component areas, specifically: Government organization and coordination; public-private IdM programs; policy and legislative coordination; and national privacy and civil liberties culture.

Actions Resulting from NSTAC Recommendations

Following the 2003 R&D Exchange in Atlanta, Georgia, the NSTAC provided the Director, OSTP with policy advice on specific areas of security technology R&D that should be taken into account when providing input to the President’s fiscal year 2004 budget request.

Reports Issued

Identity Issues Task Force Membership

Computer Sciences Corporation
Mr. Guy Copeland, Co-Chair

Nortel Networks Corporation
Dr. Jack Edwards, Co-Chair

AT&T, Incorporated
Ms. Julie Thomas
Ms. Rosemary Leffler

Bank of America Corporation
Mr. Larry Schaeffer

The Boeing Company
Mr. Bob Steele

Juniper Networks, Incorporated
Mr. Robert Dix

Microsoft Corporation
Ms. Cheri McGuire

Qwest Communications International, Incorporated
Ms. Kathryn Condello
Mr. Andrew White

Raytheon Company
Mr. Frank Newell

Science Applications International Corporation
Mr. Henry Kluepfel

Telcordia Technologies, Incorporated
Ms. Louise Tucker

VeriSign, Incorporated
Mr. William Gravell

Verizon Communications, Incorporated
Mr. Marcus Sachs

Other Identity Issues Task Force Industry Participants

ARTEL, Incorporated
Mr. Julian Minard

AT&T, Incorporated
Mr. Brian Daly
Mr. Martin Dolly

Bank of America Corporation
Mr. Manoj Govindan
Mr. Todd Inskeep

Computer Sciences Corporation
Mr. Ron Knodel
Mr. Jim Zok

ID Analytics
Mr. Tom Oscherwitz

Information Assurance Advisory, LLC
Mr. Roger Callahan

Microsoft Corporation
Mr. Matt Broda
Mr. Phil Reitinger

Netmagic Associates
Mr. Tony Rutkowski

Nortel Networks Corporation
Mr. Abbie Barbir
Mr. John Yoakum

Raytheon Company
Mr. Clifton H. Poole

Telcordia Technologies, Incorporated
Mr. Robert Lesnewich
Mr. Ray Singh
Unisys Corporation
Mr. Mark Cohn

Verizon Communications, Incorporated
Ms. Deborah Blanchard
Mr. Russel Weiser

Identity Issues Task Force Government Participants

Department of Commerce
Mr. William C. Barker
Ms. Tanya Brewer
Ms. Donna Dodson
Dr. Elaine Newton

Department of Defense
Mr. Dick Brackney
LTC Susan Camoroda, USA

Department of Homeland Security
Ms. Sue Daage

Department of State
Mr. James G. Ennis

Executive Office of the President
Ms. Carol Bales
Mr. Duane Blackburn
Mr. Thomas Donahue

Federal Communications Commission
Mr. Pat Amodio

General Services Administration
Ms. Judith Spencer

Office of the Director of National Intelligence
Mr. Thomas Seivert

Industry Canada
Mr. Bob Leafloor
Commercial Satellite Communications Security

Investigation Group / Period of Activity

Commercial Satellite Survivability Task Force
December 1982 – April 1984
June 1988 – March 1990

Satellite Task Force
September 2003 – January 2004
November 2008 – Present

Issue Background

Industry and the Government increasingly rely on the satellite infrastructure for data, voice, and video communications and services. In addition, the national security and homeland security communities use satellites for critical activities such as military support, intelligence gathering, and disaster preparedness.

The terrorist attacks of September 11, 2001, caused an unprecedented disruption to communications and raised security concerns about the protection of the Nation’s vital telecommunications systems against these new threats. Consequently, Congress highlighted the significance of satellite communications (SATCOM) as a critical infrastructure in the Homeland Security Act of 2002 (HSA). Previous security issues regarding national security and emergency preparedness (NS/EP) satellite programs have focused on providing an alternate means of communications under nuclear attack. However, rising terrorist threats pose different challenges and present new opportunities for using commercial SATCOM to ensure reliable communications for homeland security.

The commercial satellite industry plays a critical role in both national and homeland security through the provisioning of primary and backup communications, emergency response services, military support, and intelligence gathering. Over the last decade, the Federal Government has become increasingly reliant on commercial satellite systems for voice, data, and video communications for daily operations; today, U.S. troops in Iraq and Afghanistan rely on commercial satellite providers for 80 percent of their communications traffic.

History of NSTAC Actions and Recommendations

The President’s National Security Telecommunications Advisory Committee (NSTAC) established the Commercial Satellite Survivability (CSS) Task Force at its first formal meeting on December 14, 1982. The NSTAC directed the CSS Task Force to review specific satellite initiatives selected for implementation, develop an implementation concept, and prepare a report of its actions and recommendations for the NSTAC.

In September 1988, the NSTAC reactivated the CSS Task Force to review the proposed objectives and implementation initiatives of the commercial SATCOM Interconnectivity Phase II Architecture. The NSTAC approved the final CSS Task Force report in March 1990, agreeing with the Task Force assessment that the approach to commercial SATCOM Interconnectivity (CSI) Phase II Architecture was reasonable.

In January 2003, the Director, National Security Space Architect, requested that the NSTAC conduct a study of infrastructure protection measures for SATCOM systems. In response, the NSTAC established the Satellite Task Force (STF) to analyze and assess SATCOM systems’ vulnerabilities and make Presidential-level policy recommendations on how the Federal Government should work with industry to mitigate vulnerabilities to the satellite infrastructure. The STF concluded its analysis of satellite security in January 2004; based on the STF’s analysis and review of related policy issues, the NSTAC recommended that the President:

- Direct the Assistant to the President for National Security Affairs, Assistant to the President for Homeland Security, and Director, Office of Science Technology Policy, to develop a national policy with respect to the provisioning and management of commercial SATCOM services integral to NS/EP communications, recognizing the vital and unique capabilities commercial
satellites provide for global military operations, diplomatic missions, and homeland security contingency support;

- Fund the Department of Homeland Security to implement a commercial SATCOM NS/EP improvement program within the National Communications System to procure and manage the non-Department of Defense satellite facilities and services necessary to increase the robustness of Government communications; and

- Appoint several members to represent service providers and associations from all sectors of the commercial satellite industry to the NSTAC to increase satellite industry involvement in NS/EP.

Based on a request from the National Security Space Office (NSSO), the NSTAC reestablished the STF in November 2008 to review and update the 2004 Satellite Task Force Report with an emphasis on the protection of ground infrastructure and mitigation of cyber threats. The final report will provide recommendations to the President that update the information contained in the 2004 report, and present a first-ever look at the commercial satellite industry’s concerns regarding cyber security. The NSTAC utilized comments from NSSO stakeholders and a wide variety of satellite industry representatives to frame the current work strategy, data analysis methodology, and to identify new threat mitigation techniques and developing technologies of the commercial satellite communications sector. The completed report will assist the NSSO in identifying and mitigating critical issues and further advance its partnership opportunities with the commercial SATCOM industry. The report is expected to be completed November 2009.

Actions Resulting from NSTAC Recommendations

The TSS Task Force reviewed the Government actions taken on the NSTAC’s CSS Task Force Phase I recommendations and found that the CSI Program and the Industry Information Security Task Force were pursuing most of the CSS initiatives. The TSS Task Force recommended that three aspects of the CSS initiatives be studied further: Ku-band interoperability, up-link jamming protection, and transportable terminals.

The first CSS Task Force’s investigations resulted in the identification of 12 initiatives for improving the survivability and robustness of commercial satellite communications resources. The investigations also resulted in the incorporation of the CSS Program Office, established in November 1984, as the CSI Program Office in 1987. In addition, the CSS Task Force approved the CSI as part of the National Level NS/EP Telecommunications Program.

The CSI Program Office reviewed the CSS Task Force Phase II recommendations. The CSI Program Office investigated satellite technologies, such as Ku-band, and enhanced capabilities, such as connecting to local exchange carriers’ switches and providing public switched network remote access to NS/EP users, as part of the CSI architecture development effort. The projected CSI Phase II Architecture implementation date was in fiscal year 1996, but due to budget constraints, the CSI program was terminated in September 1994.

During its 2004 review of the National Space Policy, the White House incorporated aspects of the STF report into the revised policy. In particular, areas concerning ground and space links and potential points of failure were included in the revised policy. In addition, at the recommendation of the STF, the President appointed PanAmSat Holdings, Incorporated to the NSTAC to represent the commercial satellite industry. 3

Reports Issued

Addendum to the Commercial Satellite Communications Survivability Report, May 1983.

Satellite Task Force Membership

The Boeing Company
 Mr. Marc Johansen, Co-Chair

Intelsat, Limited
 Mr. Richard DalBello, Co-Chair

Harris Corporation
 Mr. Dwayne Shelby

Qwest Communications International, Incorporated
 Ms. Kathryn Condello

Raytheon Company
 Mr. Steven Haynes

Science Applications International Corporation
 Mr. Hank Kluepfel

Teledesic Corporation
 Mr. Doug Carter

Other Satellite Task Force Participants

Aerospace Corporation
 Mr. Jack Clarke

The Boeing Company
 Mr. William Patrick Reiner
 Mr. Robert Steele

Data Path
 Ms. Leslie Blaker

Hughes Network Systems, LLC
 Mr. Rajeev Gopal

Integral Systems
 Ms. Joan Grewe

Intelsat General Corporation
 Mr. Vinit Duggal
 Mr. Britt Lewis
 Mr. Sterling Winn

Northrop Grumman Corporation
 Mr. Peter Hadinger

Providence Access Company
 Mr. Andrew D’Uva

Satellite Industry Association
 Ms. Patricia Cooper

Science Applications International Corporation
 Mr. Steve Lines

Satellite Task Force Government Participants

Department of Defense
 Mr. Eric Aufderhaar
 Mr. Greg Chapman
 Mr. Ed Hosken
 Col. Jeffrey Kaczmarczyk

Department of Homeland Security
 Dr. Edward Jacques
 Mr. Will Williams

Federal Communications Commission
 Mr. Shanti Gupta
The NSTAC Response to the Sixty-Day Cyber Study Group

Investigation Group / Period of Activity

Sixty-Day Cyber Review Ad hoc Group
March 2009

Issue Background
A significant amount of work is taking place across the Federal Government and within a number of advisory committees and industry organizations to help bolster the Nation’s cyber defenses and protect networks and information. On February 9, 2009, the Obama Administration announced that it would establish a committee to conduct a sixty-day interagency review of cybersecurity plans, programs, and activities across the Federal Government. The goal of the review was to create a “strategic framework to ensure that U.S. Government cyber security initiatives are appropriately integrated, resourced and coordinated with Congress and the private sector.”

History of NSTAC Actions and Recommendations
The Administration posed four questions to the President’s National Security Telecommunications Advisory Committee (NSTAC) to assist with the review. The questions related to the topics of the Government’s role in securing/protecting critical infrastructure, organizational structure, gaps in Federal authorities, and past NSTAC experience.

To craft its response, the NSTAC conducted a thorough examination of its past work. From its body of reports and letters to the President, the NSTAC selected multiple recommendations that its members believed best addressed the Administration’s request, offering a wide range of ideas and priorities. During its examination, the following themes emerged:

- Integration of Federal cybersecurity activities under a single, central organizing governance structure is foundational to making meaningful progress;
- Collaboration with industry in the development of a legal framework is necessary to protect the Nation’s critical infrastructure from cyber threats; and
- Continued commitment to foster a strong public/private partnership is encouraged to strengthen our national cybersecurity posture.

The NSTAC completed and submitted the NSTAC Response to the Sixty-Day Cyber Study Group to the Administration in March 2009.

Actions Resulting from NSTAC Recommendations
The Administration’s 60-Day Cyberspace Policy Review summarized the conclusions of the cyber review and referenced and cited the NSTAC and the NSTAC Response to the Sixty-Day Cyber Study Group.

Reports Issued
NSTAC Response to the Sixty-Day Cyber Study Group, March 2009.

Sixty-Day Cyber Ad Hoc Group Participants
Qwest Communications International, Incorporated
Ms. Kathryn Condello, Chair

AT&T, Incorporated
Ms. Julie Thomas

Bank of America Corporation
Mr. Chris Stockley

The Boeing Company
Mr. Marc Johansen

Computer Sciences Corporation
Mr. Guy Copeland

Harris Corporation
Ms. Tania Hanna

Intelsat Ltd.
Mr. Richard Dalbello
Juniper Networks, Incorporated
Mr. Robert Dix

Lockheed Martin Corporation
Ms Kay Kapoor

Motorola, Incorporated
Mr. Michael Alagna

Microsoft Corporation
Ms. Cheri McGuire

Nortel Networks Corporation
Dr. John Edwards

Raytheon Company
Mr. William Russ

Rockwell Collins, Incorporated
Mr. Ken Kato

Science Applications International Corporation
Mr. Marv Langston

Telecordia Technologies, Incorporated
Ms. Louise Tucker

Teledesic, Incorporated
Mr. Doug Carter

VeriSign, Incorporated
Mr. William Gravell

Verizon Communications, Incorporated
Mr. Michael Hickey

IES Alternates and Other Participants

AT&T, Incorporated
Ms. Rosemary Leffler
Mr. Roger Higgins

Bank of America Corporation
Mr. Larry Schaeffer

The Boeing Company
Mr. Robert Steele

Harris Corporation
Mr. Richard White

Lockheed Martin Corporation
Gen. Charles Croom (Ret.)
Mr. Gerald Harvey

Microsoft Corporation
Ms. Cristin Flynn Goodwin

Raytheon Company
Mr. Clifton Poole

Science Applications International Corporation
Mr. Henry Kluepfel

Sprint Nextel Corporation
Ms. Maria Catafesta
Mr. Michael Fingerhut
Ms. Allison Growney

Tyco Electronics Ltd.
Ms. Joanne Piccolo

VeriSign, Incorporated
Mr. Anthony Rutowski

Verizon Communications, Incorporated
Mr. James Bean
Mr. Marcus Sachs

Sixty-Day Cyber Ad Hoc Group
Government Participants

Department of Defense
Mr. Don Dews
Mr. Dan Wenk

Department of Homeland Security
Ms. Sue Daage
Ms. Helen Jackson
Mr. Jeremy Johnson
Mr. Jim Madon
Mr. Thad Odderstol
Mr. Will Williams
Footnotes

1 The NSTAC does not formally comment on pending legislation, but the NSTAC acknowledges that the U.S. Congress is considering many of the issues discussed in this report through proposed legislation. Given the changing nature of bills during the legislative process, the NSTAC notes these developments and will track their progress.

3 PanAmSat was purchased by IntelSat in 2006. IntelSat remains as the only satellite company on the NSTAC.

Legislation and Regulation

Investigation Group / Period of Activity

Funding and Regulatory Working Group
December 1982 – December 1994

Legislative and Regulatory Group
December 1994 – September 1999

Legislative and Regulatory Working Group
September 1999 – February 2001

Legislative and Regulatory Task Force
February 2001 – Present

Issue Background
Laws and regulations govern the relationship between the Government and the public and provide the framework under which public and private entities conduct business. Within the evolving communications environment, it is essential that legislation and regulation keep pace with technological changes to ensure continued fulfillment of national security and emergency preparedness (NS/EP) requirements. Within this context, the President’s National Security Telecommunications Advisory Committee (NSTAC) reviews legal and regulatory activities that could impact NS/EP services, operations, and communications and considers areas for which there is a need for further legislative and regulatory action.

History of NSTAC Actions and Recommendations
The investigation of legislative and regulatory issues of consequence to NS/EP communications comprises a key focus for the NSTAC. Over the course of its existence, the committee has examined the implications of numerous important topics including:

► Telecommunications Act of 1996 (Telecom Act);
► Widespread Telecommunications Outages;
► National Services Planning Process;
► Assessment of Federal Critical Infrastructure Recommendations;
► Information Sharing;
► Transition to the Year 2000;
► Wireless Communications;
► Convergence;
► Foreign Ownership;
► Cybersecurity and Cybercrime
► Potential Policy Conflicts with Homeland Security and NS/EP Missions;
► Open Source Information;
► Support Anti-terrorism by Fostering Effective Technologies (SAFETY) Act;
► Defense Production Act (DPA);
► Legislative Concerns Associated with the 2005 Hurricane Season;
► Telecommunications Circuit Route Diversity Policy;
► Protected Critical Infrastructure Information;
► Government Organization for NS/EP Communications Support;
► Public Safety Spectrum and Nationwide Broadband Deployment
► New and Emerging Technologies (NET) 911 Improvement Act of 2008 and Enhanced 911 (E911).

A description of the NSTAC’s activities in each of these areas, as well as the evolution of the task force, follows.
Task Force Evolution
At its inaugural meeting in December 1982, the NSTAC established the Funding and Regulatory Working Group (FRWG) to examine funding alternatives and regulatory issues for candidate enhancements to NS/EP telecommunications. The FRWG remained active to address additional issues of a legislative and regulatory nature until 1994 when the committee decided to stand down the group until further issues arose requiring consideration. The NSTAC later amended the name of the FRWG to the Legislative and Regulatory Group (LRG) that same year per the guidance outlined in the December 1994 NSTAC Industry Executive Subcommittee (IES) Guidelines; however, it did not re-activate the LRG again until January 1997 following the passage of the landmark *Telecom Act*. Between 1997 and 2001, NSTAC renamed the LRG as the Legislative and Regulatory Working Group (LRWG) and tasked its members to serve as an ad hoc group to investigate issues and serve as a supplementary body to NSTAC task forces. In February 2001, the committee again amended the task force’s name to the Legislative and Regulatory Task Force (LRTF) and formally established it as a standing body of the NSTAC.

Telecommunications Act of 1996
As the first major overhaul of telecommunications policy since 1934, the *Telecom Act of 1996* redefined competition and regulation in virtually every sector of the communications industry. In response to passage of the *Telecom Act of 1996* and the resultant evolving telecommunications environment, the NSTAC charged the LRG to examine legislative, regulatory, and judicial actions that potentially impact NS/EP telecommunications, placing particular emphasis on monitoring implementation of the Act. In addressing this charge, the LRG established a framework for analysis, and in January 1997, began working closely with industry and Government to develop a common understanding of the NS/EP implications of the new law.

Based on the analysis conducted by the task force, NSTAC found that the *Telecom Act* did not alter carrier responsibilities for the provision of NS/EP services. However, the committee determined that continued change in the regulatory and industry structure warranted increased educational outreach efforts for new entrants and existing carriers with regard to their mandatory and voluntary obligations.

Widespread Telecommunications Outages
At the March 1997 NSTAC annual meeting, the Assistant to the President for Science and Technology asked NSTAC to investigate the possibility of a widespread telecommunications outage. Subsequently, the LRG analyzed the legal and regulatory obstacles that would hinder service restoration during widespread, major service outages. As a result, NSTAC presented its related findings in its December 1997 report discussed during the NSTAC annual meeting. The committee found the most significant legal and regulatory obstacle to be the apparent uncertainty about who could expeditiously address carriers’ concerns regarding their compliance with relevant laws or regulations during emergency situations.

To further address this finding, NSTAC charged the LRG to examine options for enhancing communication on NS/EP matters among industry, the Federal Communications Commission (FCC), and other relevant Government organizations. To that end, the LRG investigated the role of the FCC Defense Commissioner; investigated the need for an NS/EP industry advisory body to the FCC on these issues; documented the intergovernmental relationships between the FCC, the National Communications System (NCS), and the Office of Science and Technology Policy with regard to NS/EP responsibilities; and worked jointly with the NSTAC’s Network Group’s Widespread Outage Subgroup to draft procedural guidelines to help telecommunications carriers resolve issues with the FCC when critical emergency telecommunications services needed to be restored in a timely manner.

National Services Planning Process
In July 1997, the Network Reliability and Interoperability Council (NRIC) provided the FCC with a series of recommendations aimed at improving the planning process for national services and deployable telecommunications services intended or required on a national or regional basis. The NSTAC agreed that a
national services planning process, as conceived by the NRIC, could serve as an effective means for promoting NS/EP telecommunications requirements. Consequently, the committee tasked the LRG to assess what actions the NSTAC should take to ensure that industry and Government consider NS/EP requirements during the national services planning process. During discussion at the December 1997 NSTAC meeting, the committee reviewed the task force’s findings and recommended that the IES continue to assess the development of the NRIC’s national services recommendations.

Following the December 1997 meeting, the LRG established the National Services Subgroup to study the feasibility of defining NS/EP telecommunications functions as National Services. The subgroup submitted its National Services Subgroup white paper to NSTAC 21 in September 1998 geared to facilitating public awareness of selected NS/EP-critical telecommunications functions and capabilities. The white paper also promoted the continued consideration of NS/EP telecommunications service objectives by industry and Government during the future deployment of NS/EP national services.

Assessment of Federal Critical Infrastructure Recommendations

In October 1997, the President’s Commission on Critical Infrastructure Protection (PCCIP) released its final report and recommendations on protecting the Nation’s critical infrastructures, including the telecommunications infrastructure. Following the NSTAC 20 meeting, the committee charged the LRG to review the potential legislative and regulatory implications for NS/EP telecommunications as a result of the PCCIP’s recommendations. To address its charge, the LRG conducted a preliminary analysis of Presidential Decision Directive (PDD) 63, *Critical Infrastructure Protection*, which President Bill Clinton issued on May 22, 1998, to support the PCCIP recommendations and to establish a national policy to eliminate vulnerabilities in the Nation’s critical infrastructures. Based on the LRG’s findings, the committee requested that the IES undertake a more detailed assessment of the planned implementation of PDD-63 and report back regularly on progress made.

Information Sharing

Following NSTAC 21, and in response to information sharing policy outlined in PDD-63, the NSTAC tasked the LRG to identify and assess the legal and regulatory obstacles to sharing outage and intrusion information. To that end, the LRG determined that identification and discussion of existing and proposed NS/EP-related outage and intrusion information sharing mechanisms could provide additional insights to assist the group in assessing critical information sharing issues, particularly those associated with the implementation of PDD-63. As a result, and to better understand the information sharing environment and the entities involved in the process, the NSTAC developed its *Report on Telecommunications Outage and Intrusion Information Sharing*, which outlined the entities with whom telecommunications companies shared outage and intrusion information and reviewed potential legal barriers that could ultimately inhibit the information sharing process.

The NSTAC, through its LRWG, again examined information sharing issues during NSTAC 23, this time, focusing on the impediments to information exchange, especially critical infrastructure information (CII) sharing. As a result, the LRWG undertook an in-depth analysis of *The Freedom of Information Act* (FOIA), examining FOIA's potential to hinder industry information sharing with the Government. FOIA permits the public to request and gain access to records that Government departments and agencies maintain. Such disclosure could deter industry from sharing further information with the Government. Although there are a number of exemptions to FOIA’s requirements for disclosure of information, none of the exemptions clearly cover information pertaining to critical infrastructure protection (CIP). The LRWG met several times with Department of Justice (DOJ) officials to exchange views on perceived problems including liability and antitrust concerns and potential legal solutions. As a result of the LRWG’s deliberations, the NSTAC agreed with DOJ representatives on the need for a nondisclosure provision to protect “security-related” information voluntarily shared with the Government. The LRWG shared its analysis with the NSTAC’s Information Sharing-CIP Task Force, which addressed...

The NSTAC furthered its information sharing work during the NSTAC 24 and 25 cycles. During this time, the committee requested the LRTF to examine pending FOIA legislation from the 106th and 107th Congresses and to work with congressional staff to determine the status and outlook of the legislation. In response to the analysis conducted by the LRTF, the NSTAC delivered a letter to President Clinton on August 7, 2000, requesting his support on legislation that would protect CIP information voluntarily shared with the Government from disclosure under FOIA and limit liability. Following the NSTAC Meeting in June 2001, the NSTAC acknowledged the continued importance of the topic and resubmitted the letter to President George W. Bush asking him to support such legislation. On September 26, 2001, President Bush replied that he supported a narrowly drafted exception to FOIA to protect information about corporations’ and other organizations’ vulnerabilities to information warfare and malicious hacking. In a December 17, 2001, letter to the President, the NSTAC encouraged the President to continue to support information sharing legislation.

The LRTF continued to examine information sharing in the NSTAC 26 and NSTAC 27 cycles as well. During these cycles, Congress passed the Critical Infrastructure Information Act (CII Act), which provided additional FOIA and liability protections for companies that voluntarily share critical infrastructure information with DHS. Following enactment of the CII Act, the NSTAC requested the LRTF to assess whether additional information sharing barriers remained and to examine other legal and non-legal barriers for the purposes of homeland security. As a result of the LRTF’s analysis, the NSTAC drafted its Barriers to Information Sharing Report, in which it made a series of recommendations for improving the exchange of CII between industry and Government and for protecting voluntary CII that critical infrastructure owners and operators provide to the Government.

The CII Act called for the creation of a CIP program within DHS that would protect CII provided to the Department from public disclosure under FOIA and other mechanisms. On April 15, 2003, DHS published a Notice of Proposed Rulemaking (NPRM) in the Federal Register on Procedures for Handling CII. Given the implications for information sharing between the public and private sectors, the LRTF began evaluating the NPRM and the program it proposed. DHS issued its final rule on Procedures for Handling CII on September 1, 2006, establishing the Protected CII (PCII) Program Office. LRTF members noted many laudable provisions but remained concerned that the final rule was not sufficiently specific on whether information provided DHS under contract would receive PCII protections.

The task force requested the PCII Program Office provide clarification on this point. During the 2008–2009 cycle, the task force received a briefing on current PCII efforts within DHS, during which the task force learned that the Department’s PCII Program Office continues to address several outstanding issues, including the question of whether information a contractor provides to DHS under contract is eligible for PCII protection. The task force continues to monitor developments in this area.

The Year 2000 Readiness and Disclosure Act
In 1998, with the nearing arrival of the new century, the NSTAC tasked the LRG to examine relevant communications-related year 2000 (Y2K) issues, particularly the success of the Year 2000 Readiness and Disclosure Act (Y2K Act) in urging greater information sharing within industry. In response, the LRG sent a letter to the NSTAC’s IES representatives seeking their companies’ comments on the Y2K Act and any additional legislative or regulatory actions that could facilitate Y2K-related information sharing and remediation. In February 1999, the NSTAC forwarded a summary of the committee’s findings in February 1999.

Wireless Priority Communications
During NSTAC 22, the NSTAC charged the LRG to identify the barriers to the issuance of wireless telecommunications priority access rules by the FCC
and to evaluate NSTAC’s level of continued support of the Cellular Priority Access Services, [now referred to as the Wireless Priority Service (WPS)]. During the course of the LRG’s examination, the group learned that the NCS planned to implement a new approach for providing wireless priority access based on channel reservation, causing the NSTAC to conclude its study.

However, during NSTAC 26, the LRTF again engaged in wireless communications issues when the Wireless Task Force requested assistance from the LRTF in assessing the legal and regulatory aspects of the FCC Report & Order (R&O) on Priority Access Service (PAS). The LRTF reviewed the R&O and, after carefully considering the merits of reopening the PAS rulemaking, the task force concluded that revisiting the rules would be a lengthy process and could unintentionally slow the deployment of WPS. As a result, the NSTAC sent a letter to the President offering recommendations on how to facilitate the widespread deployment of wireless PAS. In the letter, the NSTAC commended the FCC for adopting a Second R&O for PAS, which indicates that carriers providing PAS shall have liability immunity from Section 202 of the Communications Act of 1934. The letter also stated that the FCC and the National Telecommunications and Information Administration should accelerate ongoing efforts to improve interoperability among Federal, State, and local public safety communications agencies. The letter further encouraged the Administration to support full and adequate Federal funding for wireless PAS.

Network Convergence

During NSTAC 22, the LRG reviewed convergence issues in light of legislative, regulatory, and judicial actions that might affect existing and future public networks and potentially impact NS/EP telecommunications. The LRG’s preliminary analysis of convergence revealed no significant implications for NS/EP telecommunications.

The NSTAC tasked the LRTF to undertake a further analysis of convergence issues during the NSTAC 25 cycle, examining whether the current legal and regulatory environment was adequate to ensure NS/EP services in the converged and next generation networks (NGN) environment. To accomplish its tasking, the LRTF coordinated with participants in the Government’s Convergence Task Force to discuss the status of the Government’s work in the area of network convergence and the assurance of NS/EP communications services.

The LRTF concluded that until the standards for packet-based services were established and the Government’s requirements in the evolving environment were certain, new legislation or regulation was premature. The task force also stated that the legal issues underlying the provisioning of NS/EP priority services to the Federal Government in an NGN environment were extremely complex and might require further study. Based on the convergence analysis conducted by the LRTF and the Network Security Vulnerability Assessments Task Force, the NSTAC issued its *Report on Network Security Vulnerability Assessments* in March 2002.

During the 2008–2009 NSTAC cycle, the LRTF assisted the Global Infrastructure Resiliency Task Force’s effort examining the implications of Internet Protocol (IP)-based services on NS/EP communications. The LRTF reexamined current broadband and IP traffic management policies, specifically those of the FCC. While the NSTAC concluded that a Government-designed IP-priority system to manage traffic would be most effective, the NSTAC’s *Report on the National Security and Emergency Preparedness Internet Protocol-Based Traffic* ultimately recommended that the President “petition the FCC for a declaratory ruling to confirm that network service providers may lawfully provide IP-based priority access services to NS/EP authorized users.”

Foreign Ownership

The NSTAC engaged the LRWG to conduct an examination of foreign ownership regulations and their possible impact on NS/EP communications during NSTAC 23. The task force examined domestic regulatory history and analyzed several mergers and acquisitions between domestic and foreign telecommunications carriers, ultimately finding that the current regulatory structure satisfied the different interests of the industry and Government parties involved. The LRWG concluded that it was unclear...
whether further statutory or regulatory changes would effectively enhance the role of national security issues in foreign ownership situations at that time. The LRWG documented its findings in a working group paper and shared its analysis with the NSTAC’s Globalization Task Force (GTF). Based on the analysis conducted by the LRWG and the GTF, the NSTAC issued its *Globalization Report* in May 2000.

Cybersecurity and Cyber Crime

At the request of the NSTAC during the 2002–2003 cycle, the LRTF examined existing legal penalties for committing Internet attacks to determine whether those penalties should be strengthened or whether additional penalties were needed. In its *Report on Penalties for Internet Attacks and Cyber Crime*, the NSTAC concluded sufficient legal authority exists to penalize and deter those who commit cyber crimes. The NSTAC also made recommendations for pursuing a well-rounded and proactive approach to combating cyber crime.

The LRTF began an examination of the May 2007 distributed denial of service (DDoS) cyber attacks against the Republic of Estonia during the 2007–2008 cycle. While the attacks’ methods and technologies were similar to previous attacks, the incident drew the attention of the international community because it was the first time attackers successfully disrupted a significant portion of a nation state’s networks. Furthermore, Estonian officials initially speculated that the attack may have been state-sponsored, raising questions of “cyber warfare,” though those assertions remain unproven. The LRTF also began to monitor and analyze Homeland Security Presidential Directive 23/National Security Presidential Directive 54, *Cyber Security and Monitoring*, which President George W. Bush signed in January 2008.

At the conclusion of its examination, the LRTF believed that the Estonia incident reaffirmed the conclusions in the *NSTAC Report on International Communications*, that cybersecurity incident response requires more formal collaboration among the United States and its international partners, which must be seamless and able to occur within a very short time frame. The LRTF also felt that an Estonia-like DDoS attack may not have a similar impact here in the United States, as Estonia is almost totally dependent on the Internet for business-to-business and consumer-to-business interface with little brick and mortar or alternate means of service provision available to the citizenry. The United States, by comparison, is not as Internet-dependent. Additionally, U.S. service providers are able to re-route traffic, control bandwidth, and address traffic as necessary on a customer-specific basis to limit the impact of such attacks.

The LRTF completed the *LRTF Issue Paper: U.S. Policy Considerations of the 2007 Estonian Cyber Attacks* in May 2008. As the Government takes steps to lay out its new approach to cybersecurity and cyber defense, the LRTF remains ready to perform analysis on any necessary changes to the legal and policy framework.

Potential Policy Conflicts with Homeland Security and NS/EP Missions

In response to an NSTAC request during cycle 27, the LRTF reviewed the policy landscape for national policies and regulations that could potentially conflict with homeland security and NS/EP missions. More specifically, the LRTF examined telecommunications policy conflicts related to fuel storage, water sector infrastructure, critical facilities markings, jurisdictional conflicts, and common underground facilities. The task force determined that policy conflicts existed due to the existence of overlapping and contradictory policies and regulations at the Federal, State, and local levels.

In response to the LRTF’s analysis, the NSTAC sent a letter to President Bush in October 2003 recommending that he ask the Homeland Security Council, the National Security Council, and Federal departments and executive agencies, including independent agencies, to undertake several activities. These activities included evaluating proposed policies and regulations to ensure that homeland security and NS/EP implications have been consolidated; completing a review of existing policies and regulations for potential cross-sector conflicts with homeland security and NS/EP priorities, and working with DHS to promptly resolve any identified conflicts; and implementing a framework to resolve
multijurisdictional (Federal, State, and local) conflicts and, if necessary, recommend an appropriate legislative resolution.

Open Source Information
In response to concerns that terrorists or other motivated adversaries could easily access sensitive information, such as the location of critical telecommunications facilities, on the Internet and use this information to plan an attack on the Nation’s telecommunications infrastructure, the NSTAC tasked the LRTF to undertake an analysis of open source information. The LRTF completed its analysis during the NSTAC 28 cycle, and on April 8, 2005, the NSTAC sent a letter to President Bush recommending various activities including the development and adoption of Web publishing and access guidelines by the Federal Government incorporating provisions that protect industry-sensitive CII provided to the Government and the promulgation of Web publishing and access guidelines for dealing with sensitive but unclassified CII.

The LRTF’s work on open source information continued during the NSTAC 29 cycle, when the NSTAC, during the March 10, 2005, Principals’ Conference Call, requested that the LRTF address the concern of open source information on academic web sites and report back to them about the advisability of scoping this issue. After conducting its analysis, the LRTF reported back to the principals that the issue did not require further scoping.

SAFETY Act
The LRTF initiated an examination of the NS/EP telecommunications implications of the implementation of the SAFETY Act at the request of the committee during cycle 28. The LRTF continued to monitor the implementation of the SAFETY Act in the NSTAC 29 cycle, reporting to the NSTAC periodically on the status of the efforts.

Defense Production Act
During NSTAC 28, the NSTAC commissioned the LRTF to begin an examination of the NS/EP implications of the Defense Production Act (DPA) and the proposed amendments to the Act and to Executive Order (E.O.) 12919, National Defense Industrial Resources Preparedness. During the NSTAC 29 cycle, the task force agreed to continue to monitor potential amendments to the DPA and to E.O. 12919 to ensure essential NS/EP needs are met in any revision to law.

Legislative Concerns Associated with the 2005 Hurricane Season
The 2005 hurricane season defined many of the committee’s legislative and regulatory priorities during the NSTAC 29 cycle. The Government’s response to Hurricanes Katrina, Rita, and Wilma prompted the NSTAC to request assistance from the LRTF to review the legal and regulatory environment in which Federal response took place. The LRTF analysis revealed that several legislative mechanisms needed revision including the Robert T. Stafford Disaster Relief and Emergency Assistance (Stafford) Act, which the committee felt did not adequately provide assistance to telecommunications infrastructure providers (TIP) in disasters. The task force also determined that difficulties carriers faced in obtaining security, fuel, water, site access, and billeting for workers could be mitigated if the Federal Government created a designation for “Emergency Responders (Private Sector)” and included TIPs in that category. Accordingly, the NSTAC sent a letter to President Bush advising him to act no later than June 1, 2006, to establish and codify the term “emergency responder (private sector)” to include TIPs and ensure they receive non-monetary assistance, including accessing restricted areas and obtaining fuel, water, power, billeting, and workforce and asset security, by:

- Directing DHS to modify the National Response Plan and its emergency support functions to designate TIPs as Emergency Responders (Private Sector) and to establish protocols and procedures for the way in which Federal, State, local, and tribal Governments should work with TIPs before, during, and after a national disaster;

- Issuing appropriate Presidential guidance to define Emergency Responders (Private Sector) under the Stafford Act and other authorities as appropriate to align with the broadened definition of national defense in the 2003 amendments to the DPA.
Specifically, the guidance should make clear that key response personnel of critical telecommunications infrastructure owners and operators should be defined as Emergency Responders (Private Sector) and should receive non-monetary Federal assistance under the Stafford Act, and

- Directing the Secretary of Homeland Security to work with Congress to align the Stafford Act and other appropriate legislative authorities with the DPA by codifying the designation of private sector TIPs as Emergency Responders (Private Sector) and by codifying the official interpretation that for-profit TIPs should receive Federal assistance.

Telecommunications Circuit Route Diversity Policy
In April 2004, the NSTAC recommended the President direct appropriate departments and agencies to support the Alliance for Telecommunications Industry Solutions (ATIS) National Diversity Assurance Initiative (NDAI), which sought to examine diversity assurance and ways to ensure it is maintained over time as well as best practices for NS/EP organizations. In its February 2006 final report on the NDAI, ATIS found that because circuit diversity assurance cannot be offered as a commercially viable product, the Government should revise existing Federal guidance on contingency planning and continuity of operations. The LRTF agreed with the ATIS findings and during the NSTAC 30 cycle evaluated methods for disseminating the NDAI recommendations to NS/EP stakeholders.

Government Organizations for NS/EP Support
During the 2008–2009 NSTAC cycle, the LRTF reviewed various Government organizations that support NS/EP communications, their missions, and impact on the current legislative and regulatory framework. These organizations included the FCC’s Public Safety Homeland Security Bureau and DHS’ Office of Emergency Communications. The LRTF will monitor and analyze the organizations’ roles as they continue to evolve.

Nationwide Broadband Deployment
A variety of past NSTAC report recommendations advocate extending broadband access as a way to help contribute to efficient and far-reaching distribution of emergency alerts and other NS/EP communications. Widespread broadband deployment will facilitate growth in electronic commerce which may also enhance the U.S. economy and strengthen American competitiveness in a global information age. During the 2008-2009 NSTAC cycle, the LRTF examined the current state of nationwide broadband deployment efforts, including those of the FCC and Congress. The 110th Congress addressed broadband deployment through the P.L. 110-385, the Broadband Data Improvement Act. It also examined the FCC’s goals of creating a nationwide, public broadband network by auctioning the advanced wireless-3 (AWS-3) spectrum.

FCC Public Safety Spectrum
The FCC believes that the establishment of a national public safety network will improve emergency responders’ voice and data communications during disasters as well as allow for increased interoperability between jurisdictions. The LRTF tracked the status of the FCC’s efforts to auction spectrum in the 698 Megahertz (MHz)-806 MHz band for public safety use during the 2008–2009 cycle. The LRTF also monitored several pieces of legislation from the 110th Congress that would have affected the FCC’s spectrum activity.

NET 911 Improvement Act of 2008 and E911
The three-digit telephone number 911 has been designated as the universal emergency number for citizens throughout the United States to request emergency assistance. During the 2008–2009 cycle, the LRTF examined the current status of 911 and E911 developments in Congress and in the FCC. The LRTF also conducted a brief analysis of P.L. 110-283, the New and Emerging Technologies (NET) 911 Improvement Act of 2008, which requires Voice over Internet Protocol carriers to provide E911 services to their customers as a standard service and facilitates service providers offering E911 at equal rates, terms, and conditions as commercial service providers. The LRTF will continue to monitor developments on 911 and E911 technologies and regulations over future cycles.
Actions Resulting from NSTAC Recommendations

In the *Barriers to Information Sharing Report*, the NSTAC advised the President that DHS should be the clearinghouse and dispenser of CII information and that CII Act protections should cover departments and agencies other than DHS. In a related action, on February 18, 2004, DHS launched the PCII Program, pursuant to the CII Act. The PCII Program Office is part of the DHS Infrastructure Partnerships Division and serves as the clearinghouse and dispenser of CII.

On October 28, 2003, in response to the NSTAC’s Letter to President Bush on National Policies and Regulations that Conflict with Homeland Security and NS/EP Missions, the Assistant to the President for Homeland Security confirmed that the staff of the Executive Office of the President had been tasked to convene a meeting with the other White House stakeholders to review the recommendations in the NSTAC’s letter and to analyze their impact to NS/EP communications.

Furthermore, the FCC’s Independent Panel Reviewing the Impact of Hurricane Katrina on Communications Networks released its *Report and Recommendations to the Federal Communications Commission* on June 12, 2006, which endorsed NSTAC’s recommendation that telecommunications infrastructure providers be afforded emergency responder status under the Stafford Act. In July 2006, DHS Secretary Michael Chertoff confirmed to the NSTAC that department officials had been working closely with Congress to ensure that the committee’s emergency responder provisions would be sufficiently addressed in future legislation to be formally introduced by the Senate. In addition, DHS announced it had developed, in partnership with Federal, State, and local government entities, as well as a private sector companies, an access standard operating procedure (SOP) to ensure that private critical infrastructure responders have priority access to disaster areas. The State of Georgia adopted the access SOP and distributed it to a broader community, including the Homeland Security Advisors and the National Association of Regulatory Commissioners.

Furthermore, Section 607 of the *Security and Accountability for Every Port Act of 2006*, which was signed into law on October 13, 2006, amends the Stafford Act by providing a list of essential services whose providers may be defined as “essential service providers.” Congress listed privately owned telecommunications among these services and declared that Federal agencies may not prevent essential service providers from accessing disaster sites or otherwise impede their efforts to conduct response and recovery of the telecommunications infrastructure “to the greatest extent practicable.” In addition, as the NCS develops supporting documents for the National Response Framework, such as the 15 planning scenarios and SOPs, it will provide input regarding access, security, and fuel support for industry essential service providers. The NCS will also include these issues in other documents it produces, including the Emergency Support Function 2, *Operations Plan and Job Aids*.

Reports Issued

Letter and Addendum to President George W. Bush on Open Source Critical Infrastructure Information, April 8, 2005.

NSTAC 2008–2009 Legislative and Regulatory Task Force Membership

Telcordia Technologies, Incorporated
Ms. Louise Tucker, Chair

Sprint Nextel Corporation
Mr. Michael Fingerhut, Vice Chair

AT&T, Incorporated
Ms. Julie Thomas

Bank of America Corporation
Mr. Larry Schaeffer

The Boeing Company
Mr. Robert Steele

Computer Sciences Corporation
Mr. Guy Copeland

Juniper Networks, Incorporated
Mr. Robert Dix

Lockheed Martin Corporation
Ms. Jennifer Warren

Microsoft Corporation
Ms. Cheri McGuire

Nortel Networks Corporation
Dr. Jack Edwards

Qwest Communications International, Incorporated
Ms. Kathryn Condello

Raytheon Company
Mr. Frank Newell

Rockwell Collins, Incorporated
Mr. Ken Kato

Science Applications International Corporation
Mr. Henry Kluepfel

Verisign, Incorporated
Mr. William Gravell

Verizon Communications, Incorporated
Mr. Michael Hickey

Other Legislative and Regulatory Task Force Industry Participants

AT&T, Incorporated
Ms. Rosemary Leffler
Mr. Jeff Thomas

Bank of America Corporation
Mr. Timothy Nagle
Mr. Chris Stockley

George Mason University
Ms. Maeve Dion

Information Assurance Advisory, LLC
Mr. Roger Callahan

Lockheed Martin Corporation
Ms. Giselle Greeser

Microsoft Corporation
Ms. Cristin Flynn-Goodwin
Mr. Paul Nichols

Nortel Networks Corporation
Mr. Ray Strasbourg
Northrop Grumman Corporation
Mr. Bruce Walker

Qwest Communications International, Incorporated
Mr. Frank Coffey
Ms. Diana Gowen
Ms. Audrey Hallet
Mr. R. David Mahon
Mr. Lawrence Sargeant

Sprint Nextel Corporation
Ms. Maria Catafesta
Ms. Allison Growney

Unaffiliated Participants
Mr. James Bean
Mr. Jack Osland

Verizon Communications, Incorporated
Ms. Ernie Gormsen
Mr. Dennis Guard
Mr. Marcus Sachs

Legislative and Regulatory Task Force
Government Participants

Department of Defense
Ms. Hillary Morgan
Dr. Walter Gary Sharp

Department of Homeland Security
Ms. Laura Kimberly
Mr. Allen F. Woodhouse

Federal Communications Commission
Mr. Gregory Cooke

Federal Reserve Board
Mr. Wayne Pacine
Research and Development

Investigation Group / Period of Activity

Network Security Task Force
February 1990 – August 1992

Network Security Group
December 1994 – April 1997

Network Group, Intrusion Detection Subgroup
April 1997 – September 1999

Research and Development Exchange Task Force
April 1997 – September 1999

Research and Development Task Force
July 2003 – Present

Issue Background

Communications and information technology research and development (R&D) advances the digital technologies that power critical national security and emergency preparedness (NS/EP) capabilities. A strong, collaborative R&D program advances the resilience of telecommunications and information systems. Therefore, the President’s National Security Telecommunications Advisory Committee (NSTAC) examines areas for future development and seeks to enhance coordination between the public and private sectors and the academic research community.

History of NSTAC Actions and Recommendations

Periodically, the Research and Development Task Force (RDTF) of the NSTAC’s Industry Executive Subcommittee (IES) conducts its Research and Development Exchange (RDX) Workshop, the broad purpose of which is to stimulate and facilitate a dialogue among industry, Government, and academia on emerging security technology R&D activities that have the potential to both positively and negatively affect the NS/EP posture of the Nation. To ensure inclusion of all stakeholders in the R&D community, the RDTF traditionally invites representatives from a broad number of private sector companies, academic institutions, and key Government agencies with NS/EP and/or R&D responsibilities such as the Office of Science and Technology Policy (OSTP), the Defense Advanced Research Projects Agency, the Department of Homeland Security Science and Technology Directorate, and the National Institute of Standards and Technology (NIST). Over the course of the workshop, participants endeavor to frame key policy issues; identify and characterize barriers and impediments inhibiting R&D; discuss how stakeholders can cooperate and coordinate efforts as the communities of interest shift; and develop specific and realistic recommendations for further action by key stakeholders and decision makers.

The RDX Workshops date back to 1990 when the growing prevalence of hacker incidents led to the formation of the NSTAC’s Network Security Task Force (NSTF). The task force’s purpose was to assess the threats to and the vulnerabilities of the public switched telephone network. A key component of the task force’s work included examining R&D issues related to security with a particular emphasis on improving commercially-applicable tools.

In mid-1991, the NSTF identified six areas in which R&D on commercially-applicable security tools was needed and asked the Government to share information about its R&D efforts in those areas. The subsequent briefings provided by representatives of the National Security Agency and NIST to the NSTAC, which constituted the NSTAC’s first RDX Workshop, demonstrated that Government already had R&D efforts under way in all of those areas.

NSTAC R&D activities gained momentum again in March 1996 when the NSTAC’s Network Security Group (NSG) facilitated a seminar for industry and Government to discuss network security R&D activities and issues. The purpose of the seminar was threefold: (1) provide a common understanding of network security problems affecting NS/EP telecommunications; (2) identify R&D activities in progress to address those problems; and (3) identify additional network security R&D activities needed.
The NSG identified four areas of interest for further investigation from the seminar—authentication, intrusion detection, integrity, and access control—upon which it conducted the second RDX Workshop on September 18, 1996. Because the objective was to facilitate meaningful discussion among participants, participation at the workshop was limited to 50 people representing 15 companies and 11 Government organizations, including one federally-funded research and development center. The committee limited industry representation to NSTAC member companies only.

In 1997, in response to a number of stimuli, including the recommendations from the 1996 RDX Workshop, the Network Group—formerly the NSG—conducted a study of intrusion detection technology R&D and analyzed it in terms of meeting NS/EP requirements. As a result of the analysis, the NSTAC made recommendations to the President, including the need to increase R&D funding for control systems of critical infrastructures and to encourage cooperative development programs to maximize the use of existing R&D resources in industry, Government, and academia. The NSTAC’s recommendations reinforced prior committee recommendations to examine the need for and feasibility of collaborative R&D approaches for security technology. It also provided the basis for the concept of the third RDX Workshop, Enhancing Network Security Technology: R&D Collaboration, held in October 1998 at Purdue University’s Center for Education and Research in Information Assurance (IA) and Security to examine collaborative approaches to security technology R&D. The participants, who for the first time included members of the academic community, also discussed the need to train more information technology (IT) security professionals, create large-scale test beds to test security products and solutions, and promote the creation of IA Centers of Excellence in academia.

Deliberations at the RDX Workshop at Purdue University resulted in several findings and recommendations for future industry, Government, and academia work. Discussions also noted three recommendations for future NSTAC consideration, including the need to conduct another R&D Exchange in the spring of 2000 to continue the dialogue on the long-term issues associated with infrastructure assurance and network security,” such as new threats and convergence. The third RDX Workshop also provided the model for all future workshops.

Held at the University of Tulsa in September 2000, the fourth RDX Workshop examined issues of transparent security in a converged and distributed network environment. Attendees discussed the need to address the shortage of qualified information security professionals, expand the number of universities participating in the IA Centers of Excellence program, and promote best practices, standards, and protection profiles to enhance the security of Next Generation Networks. Findings and recommendations from the workshop included the establishment of NSTAC task forces to address standards and best practices for network security.

The fifth workshop held in March 2003 at the Georgia Tech Information Security Center (GTISC) at the Georgia Institute of Technology in Atlanta, Georgia, explored the full range of telecommunications and information systems trustworthiness issues as they pertained to NS/EP telecommunications and information systems trustworthiness issues as they pertained to NS/EP telecommunications and information systems trustworthiness issues. Specifically, the attendees examined trustworthiness from four different perspectives: cyber and software security, physical security, integration issues, and human factors. From this event, the RDTF developed seven specific findings including the need to clearly define the term NS/EP in a post-September 11, 2001, world characterized by a rapidly changing technology and threat environment and the need for a large-scale testbed that could be used as an environment to test NS/EP systems and critical infrastructures.

To directly address the findings from the 2003 RDX Workshop during the NSTAC 27 cycle, the RDTF developed a “living” discussion paper providing the background for the policy components of the evolving definition of NS/EP. The RDTF also examined several large-scale public and private test beds, reviewing their capacity to test the telecommunications and information systems infrastructures for NS/EP purposes. As a result, the NSTAC finalized recommendations for a joint, collaborative, distributed.
industry, Government, and academia pilot testbed that could advance the current state of NS/EP and critical infrastructure protection integration activities.

The sixth workshop, held in Monterey, California in October 2004, reconsidered the R&D issues associated with trustworthy NS/EP telecommunications addressed at the 2003 RDX Workshop and examined progress made, unfinished work, and new challenges. Participants again focused on major cyber and software, physical, human factor, and integration research issue areas and discussed the need for information exchange and collaboration efforts within the R&D community.

At the 2004 RDX Workshop, participants resoundingly agreed that embedding strong, ubiquitous authentication and identity management technologies into future networks was critically important. As a result of this discussion, the NSTAC evaluated whether it should conduct an analysis of identity management security concerns unique to NS/EP telecommunications.

The seventh and first-ever international workshop in Ottawa, Ontario, Canada in September 2006 focused on international multilateral collaborative R&D to enhance security on the network. Participants explored and prioritized critical issues related to international collaboration on communications and cyber R&D that enhanced preparedness and security. Participants identified and characterized barriers and impediments inhibiting multilateral, collaborative research investments and discussed how international stakeholders can cooperate and capitalize on collective advancements.

As a result of the discussions, the NSTAC began to conduct intense analysis of identity management (IdM) security concerns and increase education and awareness of the subject and strengthen collaboration amongst nations in regards to Research and Development initiatives. During the 2007–2008 cycle, the RDTF focused on analyzing IdM to determine the impact on NS/EP communications. The task force developed an NSTAC working definition of IdM and an inventory of existing IdM-related activities in the private and government sectors. The RDTF performed a gap analysis that determined the best role for the NSTAC is to continue to monitor and examine the development of IdM standards in the international community.

The most recent RDX Workshop was held at the Motorola Innovation Center in Schaumburg, Illinois, on September 25–26, 2008. The event specifically focused on the following areas: emergency communications response networks, convergent technologies, defending cyberspace, identity management, and emerging technologies. The participants collectively identified and characterized the following issues affecting the evolving communications landscape: (1) need for enhanced education, awareness, and training to reduce security risks and vulnerabilities; (2) need for economic justifications and incentives to drive R&D efforts in the business community; (3) need for survivable and resilient communications infrastructure during emergency situations; (4) challenges presented by expanded mobile architecture on access and trust; (5) need for evolving policy approaches to address the impacts of many new technologies; (6) need for increased investment in R&D infrastructure to drive R&D efforts; and (7) need for enhanced information sharing between industry, Government, and academia on impending threats and existing R&D efforts.

Actions Resulting from NSTAC Recommendations
Following the 2003 RDX Workshop in Atlanta, Georgia, the RDTF provided the Director, OSTP with policy advice on specific areas of security technology R&D that should be taken into account when providing input to the President’s fiscal year 2004 budget request. The RDTF also provided its NS/EP Definition Discussion Paper to the Executive Office of the President to utilize in on-going discussions on NS/EP communications.

Reports Issued

Research and Development Task Force Membership

Computer Sciences Corporation
Mr. Guy Copeland, Chair

Motorola, Incorporated
Mr. Michael Alagna

Microsoft Corporation
Ms. Cristin Flynn-Goodwin

Telecordia Technologies, Incorporated
Ms. Louise Tucker

VeriSign, Incorporated
Mr. William Gravell

Verizon Communications, Incorporated
Mr. James Bean

Other Research and Development Task Force Participants

AT&T, Incorporated
Ms. Rosemary Leffler

Computer Sciences Corporation
Mr. James Zok

Georgia Institute of Technology
Dr. Seymour Goodman

Northrop Grumman Corporation
Mr. David Dobbs

VeriSign, Incorporated
Mr. Anthony Rutowski

Verizon Communications, Incorporated
Mr. Marcus Sachs

Government Research and Development Task Force Participants

National Institute of Standards and Technology
Ms. Annabelle Lee

Department of Homeland Security
Mr. Thad Odderstol

Other Research and Development Task Force Participants

AT&T, Incorporated
Ms. Julie Thomas

The Boeing Company
Mr. Robert Steele
Footnote

Automated Information Processing

Investigation Group / Period of Activity

Automated Information Processing Task Force
December 1982 – December 1984

Issue Background
The need to ensure a survivable automated information processing (AIP) capability to support national security and emergency preparedness (NS/EP) telecommunications prompted the NSTAC to initiate a study of the AIP issue on December 14, 1982. The AIP Task Force addressed the issue for nearly 2 years.

History of NSTAC Actions and Recommendations
In July 1983, NSTAC II recommended that the President direct the National Security Council, in conjunction with industry, to identify essential NS/EP functions and their dependence on AIP, and to rank those functions in order of priority on a time-phased basis. In April 1984, NSTAC III recommended that the President establish an AIP vulnerability awareness program within the Government. On December 12, 1984, NSTAC IV forwarded the following AIP recommendations to the President:

► Establish a full-time management entity to implement the telecommunications AIP survivability effort;
► Conduct AIP vulnerability awareness programs in conjunction with the private sector;
► Develop NS/EP AIP policy;
► Initiate efforts to enhance the survivability of NS/EP AIP in general; and
► Provide the necessary funding and develop incentives for AIP survivability enhancements.

The TSS Task Force worked on the AIP issue. It reviewed the Government’s responses to the NSTAC IV’s AIP recommendations. On September 22, 1988, the NSTAC approved and forwarded the TSS Task Force findings and recommendations on AIP to the President.

Actions Resulting from NSTAC Recommendations
The TSS Task Force reviewed the Government’s responses to the NSTAC’s AIP recommendations. The task force found the Commercial Network Survivability program was addressing the recommendations regarding AIP embedded in telecommunications, but the Government had not implemented the recommendations on AIP for telecommunications operational support and AIP required to support NS/EP functions in general. The TSS Task Force recommended the Government consider the implications of all operational support AIP, especially for network management, restoration, and reconstitution; and that the Government implement an NS/EP AIP awareness program. The NSTAC approved the TSS Task Force’s findings and recommendations on AIP and forwarded them to the President on September 22, 1988.

Reports Issued

Commercial Network Survivability

Investigation Group / Periods of Activity

Commercial Network Survivability Task Force
February 1984 – October 1985

Issue Background
In September 1983, the NSTAC IES reviewed the issues associated with telecommunications systems survivability and decided its scope was too broad for a single task force to address. The IES requested that the Resource Enhancements Working Group (REWG) and the Emergency Response Procedures Working Group (ERPWG) meet to discuss and refine the issues. The REWG and ERPWG met on November 9, 1983. They suggested establishing the Commercial Network Survivability (CNS) Task Force to develop and prioritize initiatives to enhance the survivability of the terrestrial portion of commercial carrier networks. The IES initiated the assessment of the CNS issue on February 29, 1984. It formed the CNS Task Force and instructed it to improve the survivability of commercial communications systems and facilities, and identify initiatives to improve interactive emergency response capabilities among the commercial networks.

History of NSTAC Actions and Recommendations
On October 9, 1985, the NSTAC forwarded five CNS recommendations to the President regarding:

★ Specification of survivability requirements for NS/EP services;

★ Development of NS/EP network architecture plans;

★ Development of plans and procedures for network emergency operations;

★ Acquisition and maintenance of databases; and

★ Government participation in standards organizations.

The President endorsed those initiatives, and the OMNCS undertook a CNS program. On November 6, 1987, the NSTAC approved the TSS Task Force’s findings and recommendations on CNS and forwarded them to the President.

Actions Resulting from NSTAC Recommendations
The TSS Task Force reviewed Government actions taken on the NSTAC’s CNS recommendations. The task force found the Government’s actions focused on the highest threat level, but the Government had taken no action on the CNS Task Force recommendation to form a joint industry and Government group to develop network architecture plans. The TSS Task Force recommended that the CNS program be expanded to include the entire threat spectrum and all NS/EP users.

The OMNCS established a CNS Program Office which engineered and implemented enhancements in the PSN for NS/EP disaster recovery communications use during regional emergencies and national crises. The CNS Program Office evaluated the effectiveness of those enhancements by modeling the anticipated effects of natural disasters and wartime scenarios using computer simulations and through proof-of-concept testing. The OMNCS used its computer modeling capabilities and extensive database containing detailed information on the structure of the PSN to assess the CNS enhancements. Enhancements included dedicated leased lines in the local exchange carrier networks to provide alternate, survivable routes for NS/EP communications. The program office expected future enhancements to use advanced technology service offerings from those same carriers and from cellular service providers and competitive access providers.

The Mobile Transportable Telecommunications (MTT) program, an associated effort, demonstrated reconnecting isolated portions of the PSN using standard military radio equipment. The MTT program performed these demonstrations with National Guard equipment and participation. The CNS Program Office worked with other National Level NS/EP Telecommunications Program (NLP) elements to
ensure interoperability of CNS network enhancements with other NLP component programs, such as Commercial Satellite Command Interconnectivity and the Government Emergency Telecommunications Service. In September 1994, the CNS program was terminated due to budget constraints.

Reports Issued

Commercial Satellite Security

Investigation Group / Period of Activity

Commercial Satellite Survivability Task Force
December 1982 – April 1984
June 1988 – March 1990

Satellite Task Force
September 2003 – January 2004

Global Positioning System Working Group
July 2007 – February 2008

Issue Background
Industry and the Government increasingly rely on the satellite infrastructure for data, voice, and video communications and services on a National and global basis. The national security and homeland security communities use satellites for critical activities such as military support, intelligence gathering, and disaster preparedness.

History of NSTAC Actions and Recommendations
At the first formal meeting of the President’s National Security Telecommunications Advisory Committee (NSTAC) on December 14, 1982, the NSTAC agreed to emphasize commercial satellite communications (SATCOM) survivability initiatives. The NSTAC directed the Commercial Satellite Survivability (CSS) Task Force Resource Enhancements Working Group to assess the vulnerability of the commercial satellite communications network and the enhancements to the national security and emergency preparedness (NS/EP) telecommunications infrastructure that the use of commercial carrier satellites and Earth terminals could provide.

In June 1988, the NSTAC reactivated the CSS Task Force to review the proposed objectives and implementation initiatives of the Commercial SATCOM Interconnectivity Phase II Architecture and offer recommendations. In March 1990, the NSTAC approved the final report of the reactivated CSS Task Force, which concluded that the Commercial SATCOM Interconnectivity Phase II Architecture approach was reasonable, and made several recommendations to the Government.

The terrorist attacks on September 11, 2001, raised security concerns about the protection of the Nation’s vital telecommunications systems against threats, and raised awareness that a Federal program did not exist to ensure NS/EP communications via commercial satellite systems and services.

In January 2003, the Director, National Security Space Architect, requested that the NSTAC conduct a study of infrastructure protection measures for SATCOM systems. In response, NSTAC formed the Satellite Task Force (STF) to analyze and assess SATCOM systems’ vulnerabilities and make policy recommendations to the President on how the Federal Government should work with industry to mitigate vulnerabilities to the satellite infrastructure.

The STF engaged broad participation from representatives of NSTAC-member companies, non-NSTAC commercial satellite owners and operators, commercial satellite trade associations, Government agencies, and technical experts. The STF concluded its analysis of satellite security in January 2004 and presented its findings in the STF Report. On the basis of its analysis and review of related policy issues, the NSTAC offered the following recommendations to the President:

- Direct the Assistant to the President for National Security Affairs, Assistant to the President for Homeland Security, and Director, Office of Science Technology Policy, to develop a national policy with respect to the provisioning and management of commercial SATCOM services integral to NS/EP communications, recognizing the vital and unique capabilities commercial satellites provide for global military operations, diplomatic missions, and homeland security contingency support;
Fund the Department of Homeland Security (DHS) to implement a commercial SATCOM NS/EP improvement program within the National Communications System (NCS) to procure and manage the non-Department of Defense (DOD) satellite facilities and services necessary to increase the robustness of Government communications; and

Appoint several members to represent service providers and associations from all sectors of the commercial satellite industry to the NSTAC to increase satellite industry involvement in NS/EP.

As a part of its review, the NSTAC also considered Global Positioning System (GPS) timing capabilities and developed initial findings and a recommendation for further study of GPS-related issues. At the 2007 NSTAC meeting, Ms. Frances Fragos Townsend, Assistant to the President for Homeland Security and Counterterrorism, requested that the NSTAC begin a scoping effort to further evaluate the commercial communications infrastructure’s reliance on GPS. Ms. Townsend called for the NSTAC to present its findings and recommendations for White House evaluation.

In response to this request, the NSTAC formed a working group composed of industry and Government representatives to review findings from the March 2004 NSTAC Satellite Task Force Report on GPS vulnerabilities within the commercial satellite infrastructure, as well as the findings and recommendations of the August 2001 Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Positioning System, prepared by the Volpe National Transportation Systems Center. The working group also examined the commercial communications reliance on GPS and the possible impacts that loss or disruption of GPS could have on the commercial communications industry, including its reliance on GPS for synchronizing local timing clocks.

The NSTAC found that the Federal Government’s commitment to provide and maintain free civil space-based positioning, navigation, and timing GPS services promotes vast commercial-communications-industry adoption of GPS-based solutions, supporting a wide range of industry functions and applications. The NSTAC also found that short-term loss or disruption of GPS will have minimal impact on the commercial communications infrastructure and its operations with the exception of wireless Enhanced 911 (E911) Phase II requirements. Short-term loss or disruption of GPS signals will affect the ability of E911 dispatchers to determine accurate location information. In addition, the NSTAC determined that the precise consequences of medium- to long-term GPS loss or disruption will vary based on multiple factors. The NSTAC noted that a complete and catastrophic loss of GPS over an extended period of time (for example, more than one month) and its affect on a large geographic area (such as nationwide, continental, or global) is extremely unlikely. The NSTAC determined that, due to the improbability of such an event, overall impact is more difficult to ascertain.

As a result of its findings, the NSTAC recommended that the President direct DHS and DOD to:

Include various GPS outage scenarios in future planned disaster recovery exercises in coordination with the commercial communications industry. The National Communications System (NCS) will consider opportunities in fiscal year (FY) 2009 exercise season to consider incorporation of GPS outage scenarios in its Tier 1 exercise planning.

Actions Resulting from NSTAC Recommendations

The Telecommunications System Survivability (TSS) Task Force reviewed the Government actions taken on the NSTAC’s CSS Task Force Phase I recommendations and found that the Commercial SATCOM Interconnectivity (CSI) Program and the Industry Information Security Task Force were pursuing most of the CSS initiatives. The TSS Task Force recommended that three aspects of the CSS initiatives be studied further: Ku-band interoperability, up-link jamming protection, and transportable terminals.

The first CSS Task Force’s investigations resulted in the definition of 12 initiatives for improving the survivability and robustness of commercial satellite communications resources. The investigations also resulted in the incorporation of the CSS Program Office, established in November 1984, as the CSI
Program Office in 1987. In addition, the CSS Task Force approved the CSI as part of the National Level NS/EP Telecommunications Program.

The CSI Program Office reviewed the CSS Task Force Phase II recommendations. The CSI Program Office investigated satellite technologies, such as Ku-band, and enhanced capabilities, such as connecting to local exchange carriers’ switches and providing public switched network (PSN) remote access to NS/EP users, as part of the CSI architecture development effort. The projected CSI Phase II Architecture implementation date was in FY 1996, but due to budget constraints, the CSI program was terminated in September 1994.

During its 2004 review of the National Space Policy, the White House incorporated aspects of the STF report into the revised policy. In particular, aspects concerning ground and space links and potential points of failure were included in the revised policy. In addition, at the recommendation of the STF, the President appointed PanAmSat Holdings, Inc., to the NSTAC to represent the commercial satellite industry.1

The NCS reviewed the NSTAC report and plans to work with DOD to incorporate GPS outage scenarios, and particularly a long-term and widespread GPS disruption scenario in future exercises.

Following a request from the National Security Space Office (NSSO), the NSTAC reestablished the STF in November 2008 to review and update the 2004 Satellite Task Force Report with an emphasis on the protection of ground infrastructure and mitigation of cyber threats. Please see the Commercial Satellite Communications Security section in the Active Issues section of this NSTAC Issue Review for more information.

Reports Issued

Addendum to the Commercial Satellite Communications Survivability Report, May 1983.

CSS Status Report, April 1984.

Satellite Report, March 2004.

NSTAC Report to the President on Commercial Communications Reliance on the Global Positioning System, February 2008.
Common Channel Signaling

Investigation Group / Period of Activity

Common Channel Signaling Task Force
April 1993 – January 1994

NS/EP Panel
March 1994 – March 1995

Issue Background

At the April 28, 1993, Industry Executive Subcommittee (IES) Meeting, the Operations Working Group National Security and Emergency Preparedness (NS/EP) Panel recommended that the IES establish a task force to investigate common channel signaling. The task force would determine whether widespread, long-duration CCS outages affecting multiple interconnected carriers were a significant risk to the public switched network and NS/EP telecommunications. The IES established the Common Channel Signaling (CCS) Task Force to:

► Determine if there were failure mechanisms that could potentially lead to widespread, long-duration CCS outages among multiple interconnected carriers;

► Evaluate the risk to NS/EP user telecommunications;

► If significant risk existed, examine procedural or technological alternatives for mitigating it; and

► Present appropriate recommendations to NSTAC 16.

The CCS Task Force received informational briefings on the CCS architecture and on CCS network security incidents and concerns, protocol changes, the role of the Network Security Information Exchange in evaluating and determining CCS failures, and the Network Reliability Council’s Signaling Network System Focus Team. At NSTAC 16, March 2, 1994, the IES deactivated the task force.

At the March 2, 1995, IES Meeting, the NS/EP Group Chair explained that during the preceding year, no significant outages had occurred during the group’s monitoring of the CCS network (the panel’s name was changed to the NS/EP Group in accordance with the December 1994 IES Guidelines). The Chair concluded that if no significant outages occurred in the next quarter, the group would discontinue monitoring the CCS network.

History of NSTAC Actions and Recommendations

The task force reported its conclusions and recommendations to NSTAC 16 on March 2, 1994. The task force concluded that the CCS architecture was inherently reliable and that the probability of a large-scale, long-duration, multiple carrier CCS outage resulting from a failure condition propagated to other CCS networks presented a low risk to NS/EP telecommunications. The IES recommended to deactivate the task force and tasked the NS/EP Panel to monitor CCS reliability for a year before reactivating or disbanding the task force.

After receiving this tasking, the NS/EP Panel developed plans for a February 1995 tabletop CCS restoration exercise. In February 1995, the Network Operations Forum conducted the CCS restoration exercise, thus fulfilling the obligations of the CSS Task Force charge.

Reports Issued

Electromagnetic Pulse

Investigation Group / Period of Activity

Electromagnetic Pulse Task Force
September 1983 – October 1985

Issue Background

The NSTAC Industry Executive Subcommittee initiated the electromagnetic pulse (EMP) assessment on September 27, 1983, in response to a Government request for industry’s perspective on the options available to industry and Government for improving the EMP survivability of the Nation’s telecommunications networks. The NSTAC approved the EMP study on April 3, 1984.

History of NSTAC Actions and Recommendations

On December 12, 1984, the NSTAC forwarded the following recommendations on EMP to the President:

- Designate an appropriate Federal agency to serve as an industry point of contact for EMP mitigation efforts and information distribution;

- Support industry through its standards organizations in the development of electromagnetic standards that take the EMP environment into account; and

- Undertake a program to improve the EMP endurability of the Nation’s commercial electrical power systems.

On October 9, 1985, the NSTAC approved the EMP Final Task Force Report and forwarded a recommendation to the President, calling for a joint industry and Government program to reduce the costs of existing techniques for mitigating high-altitude electromagnetic pulse-induced transients and to develop new techniques for limiting transient effects.

Actions Resulting from NSTAC Recommendations

The TSS Task Force reviewed the Government actions taken on the NSTAC’s EMP recommendations. It found that the Government had implemented nine of the EMP initiatives or was implementing them. The TSS Task Force made the following recommendations:

- Industry and Government should continue to work together to implement the EMP initiatives;

- The Government should prepare an unclassified EMP handbook; and

- Industry, consistent with cost, should incorporate low-cost mitigation practices in its new/upgrade programs.

The NSTAC approved the TSS Task Force’s findings and recommendations on EMP and forwarded them to the President on November 6, 1987.

The OMNCS designated its Office of Technology and Standards as the Federal office to serve as an industry and Government point of contact. It used the American National Standards Institute T1Y1 Committee as a forum for developing electromagnetic standards in support of industry and issued an unclassified EMP handbook (*EMP Mitigation Program Approach, NCS-TIB 87-17*). The OMNCS received results from a simulated EMP test on an AT&T PSN switch. The OMNCS assessed the EMP impact on the PSN based on test results of transmission, signaling, and switching facilities. EMP test analysis results showed little cause for concern regarding the physical EMP survivability of the PSN, but revealed an increasing PSN vulnerability to EMP-induced switch and signaling upset.

Reports Issued

EMP Task Force Status Report, January 12, 1984.

Emergency Communications and Interoperability

Investigation Group / Period of Activity

Emergency Communications and Interoperability Task Force
January 2006 – September 2007

Issue Background
Over the course of three months in the summer/fall of 2005, Hurricanes Katrina, Rita, and Wilma battered the U.S. Gulf Coast region, destroying homes and communities, as well as entire portions of the telecommunications infrastructure. The destruction posed unprecedented communications challenges and revealed a lack of sufficient operability and interoperability among the multiple public and private response and recovery organizations supporting emergency communications situations. Lessons learned from these storms magnified the importance of Government vigilance in leveraging a full suite of communications capabilities to protect and ensure national security and emergency preparedness (NS/EP) telecommunications in the future.

History of NSTAC Actions and Recommendations
In response to concerns regarding the sufficient operability and interoperability of emergency communications systems during the 2005 hurricane season, the President’s National Security Telecommunications Advisory Committee (NSTAC) established the Emergency Communications and Interoperability Task Force (ECITF) to develop recommendations regarding short-term interoperability solutions for responders in advance of the 2006 hurricane season.

Based on the ECITF’s initial analysis in March 2006, the NSTAC provided short-term recommendations in a Letter to the President on Emergency Communications and Interoperability, outlining emergency communications and interoperability issues and identifying actions to improve responder communications capabilities.

The ECITF continued to refine and expand on the letter’s recommendations and published the NSTAC Report on Emergency Communications and Interoperability in January 2007. In the report, the NSTAC recommended that the President, in accordance with responsibilities and existing mechanisms established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Functions:

► Expand use of Deployable Communications Capabilities. Direct the Department of Homeland Security (DHS) to incorporate into its emergency communications plans and programs rapidly deployable, interoperable, mobile solutions that will provide reliable communications to emergency responders in the event of a regional catastrophic failure involving complete or significant loss of communications infrastructure. The President should also direct DHS to expand and enhance the use of the Wireless Priority Service (WPS) program in an area(s) of catastrophic critical infrastructure loss and/or damage through multi-carrier WPS end-to-end solutions that facilitate the rapid restoration of essential wireless network elements.

► Enhance the Telecommunications Service Priority (TSP) Program for Wireless Networks. Direct DHS and other responsible Federal agencies to explore enhancements to the TSP program to accommodate expanded requests from NS/EP users of wireless telecommunications services at critical sites. The President should also direct Federal agencies and encourage State and local agencies to fully utilize the existing provisions of TSP and to apply for the enhanced wireless TSP coverage provisions as they are developed for use at their critical sites.

► Establish a Uniform Protocol to Identify Emergency Management and Coordinators’ Contact Information. Direct DHS, with support from the National Communications System (NCS) and the National Coordinating Center, to establish a uniform protocol working with Federal, State, and local government organizations that can dynamically identify their emergency management and coordinators’ contact information, especially
during times when regular contact information changes due to event situations, and a capability to share that information with DHS.

- **Improve NS/EP Policy to Support Emergency Communications.** Modernize existing NS/EP policy guidance to clarify and consolidate Federal Government emergency communications roles and responsibilities. Specifically, additional Presidential policy guidance is required to:
 - Clearly delineate the NS/EP and emergency communications roles and functions of the NCS, the National Cybersecurity Division (NCSD), and the new Office of Emergency Communications (OEC), as established by the *DHS Appropriations Act of 2007*, and any other DHS organization, such as the Science and Technology Directorate and the Federal Emergency Management Agency (FEMA), with a role or responsibility in the area of emergency communications;
 - Preserve and maintain critical NS/EP functions and capabilities that support the national leadership; and
 - Ensure executive oversight across the Federal Government for a fully coordinated, integrated, and interoperable emergency response communications function and capability.

- **Include Critical Elements in the National Emergency Communications Strategy (NECS) and the National Emergency Communications Plan (NECP).** Incorporate the following critical elements in the development, maintenance, and execution of the NECS and associated implementation guidance, and directing DHS and other responsible Federal agencies to incorporate the elements into the NECP:
 - Large-scale State and regional shared public safety networks and Federal grants;
 - Yearly benchmarks for achieving defined interoperability objectives;
 - Nationwide outreach to support emergency response communications;
 - Consolidation of operations centers to increase coordination and situational awareness; and
 - Identification of specific private-sector emergency communications and interoperability support roles.

- **Address Emergency Communications in the Converged Environment.** To encourage responsive emergency communications capabilities in the converged environment, establish and incorporate the following capability objectives into the NECS and associated implementation guidance, and also direct DHS to incorporate the capability objectives into the NECP:
 - Support for a significantly expanded user base;
 - Full leveraging of network assets;
 - Internet Protocol-based interoperability;
 - Assured access for key users through priority schemes or dedicated spectrum;
 - National scope with common procedures and interoperable technologies;
 - Deployable elements to supplement and bolster operability and interoperability;
 - Resilient and disruption-tolerant communications networks;
 - Network-centric principles benefiting emergency communications; and
 - Enhanced communications features.

Upon publication of the NSTAC Report to the President on Emergency Communications and Interoperability, the NSTAC conducted outreach activities, such as informational briefings by the ECITF leadership, on the report’s findings and recommendations to educate emergency
responder stakeholder communities, including Federal, State, and local government entities, non-governmental organizations, and private sector organizations. The NSTAC also used comments from the Executive Office of the President (EOP) to frame future NSTAC work strategies, and in discussions with EOP sponsors, who solicited specific NSTAC assistance in evaluating how Internet Protocol-enabled capabilities and technologies might play a role in enhancing emergency communications interoperability.

Actions Resulting from NSTAC Recommendations

As a result of the devastation caused during the 2005 hurricane season and informed by the NSTAC's associated recommendations, DHS, in conjunction with other Federal agencies, has undertaken several actions to ensure successful emergency communications for future emergencies.

In relation to the NSTAC recommendation to create a deployable communications capability for the Gulf Coast region in accordance with the February 2006 Federal response to Hurricane Katrina: Lessons Learned Recommendation 37, DHS and the Department of Commerce announced the release of the Public Safety Interoperable Communications Grant Program, providing nearly $1 billion in grant funding to States and urban areas to improve interoperable communications capabilities, including deployable communications. In addition, the NCS is working with the Department of Justice (DOJ) Wireless Management Office to include the DOJ's Satellite Mutual Aid Radio Talkgroup for the Satellite Priority Service pilot offering. The pilot offering will provide reliable communications, independent of Public Switched Telephone Network (PSTN) infrastructure damage, to Federal, State, and local emergency responders at all levels of Government in a disaster region.

In order to enhance the TSP Program for wireless networks, the NCS took steps to address the needs of the priority services, which were highlighted by Hurricanes Katrina, Rita, and Wilma. Specifically, the NCS outreached further to expand the coverage and capabilities of Government Emergency Telecommunications Service (GETS), WPS, and TSP user knowledge by increasing awareness of the priority services and educating State and local governments. Regarding the NSTAC recommendation on expanded TSP for wireless users, the NCS recommended that the NCS Committee of Principals’ Priority Services Working Group research and consider the feasibility of the NSTAC recommendation. Efforts relating to the utilization of the existing TSP program include assigning 65,257 TSP codes to the wireless carriers since 2001 to ensure restoration priority for land lines that support cell towers. Work continues with Federal, State, and local partners resulting in an increase of over 100,000 TSP assignments over the past five years.

In order to establish a uniform protocol for the identification of Federal, State, and local Government emergency management and coordinators’ contact information, the *National Response Plan* (NRP) identified the Emergency Support Function (ESF) #2—Communications, which included communications emergency management and coordinator’s contact information. This information was considered and addressed as an element of the NCS ESF #2 Operations Plan. In addition, the NCS increased its visibility and outreach efforts at the State and local level through in-region placement of NCS support personnel with specific State/local coordination responsibilities. Finally, the NCS continues to coordinate with the Federal Communications Commission's Public Safety and Homeland Security Bureau in its mission to address public safety, homeland security, national security, emergency management and preparedness, and disaster management in order to achieve more effective distribution and sharing of contact information.

The NCS is working to improve NS/EP policy to support emergency communications by clarifying the roles and responsibilities in disaster response scenarios. Specifically, the *National Response Framework* ESF #2 Annex designates the NCS as the primary agency for communications infrastructure restoration, FEMA as the primary agency for tactical communications response efforts, and NCSD and the United States Computer Emergency Readiness Team (US CERT) as the coordinating agency for a cyber incident. In addition, the
NCS provided comments to the EOP regarding NCS Directive 3-10, *Minimum Requirements for Continuity Communications Capabilities*, developed the accompanying NCS Manual 3-10-1, *Guidance for Implementing NCS Directive 3-10*, and developed the draft NCS Handbook 3-10-1, *Guidance for Improving Route Diversity Within Local Access Networks*.

In order to include critical elements in the NECP and address emergency communications in the converged environment, the OEC led the development of the NECP, in cooperation with State, local, and tribal governments; Federal departments and agencies; emergency response providers; and the private sector. One of the key inputs into the NECP is the NSTAC *Report to the President on Emergency Communications and Interoperability*, including the critical capability objectives identified by the NSTAC. The Department of Homeland Security publicly released the NECP on July 31, 2008.

The NCS is also working to engineer and deploy a pilot satellite augmentation service to the GETS/WPS whereby backup satellite service for approximately 70 emergency operation centers and other critical communications sites will be made available and include additional routing enhancements in the PSTN. The Satellite Priority Service will be resilient to PSTN damage.

Reports Issued

Energy

Investigation Group / Period of Activity

Electromagnetic Pulse Task Force
September 1983 – October 1985

Telecommunications System Survivability Task Force
March 1986 – June 1989

Energy Task Force
August 1988 – March 1990; October 1991 – May 1993

National Security and Emergency Preparedness Panel
March 1994 – October 1994

Telecommunications and Electric Power Interdependency Task Force
January 2005 – December 2006

Issue Background

For decades, professionals in the telecommunications industry have been concerned with the potential impact a sustained power grid outage would have on the telecommunications network. Events, including the power outage in Eastern Canada in January 1998, the terrorist attacks of September 11, 2001, the Northeast blackout in August 2003, and the devastating hurricane seasons of 2004 and 2005, continued to draw attention to the interdependencies between the two sectors and re-energized industry and Government efforts to find strategies to both dampen the impact of and mitigate against further occurrences. In addition to man-made and natural threats to the infrastructure, changing trends in telecommunications network design also raise questions about the continued reliance of the telecommunications sector on electric power sources. With the growth of the next generation network, the attendant increase in the use of wireless and mobile technologies, and the dispersion of network elements, the network and its users will increasingly rely on commercial electric service to supply the necessary power.

In this environment, the telecommunications and electric power sectors will increasingly be required to work together to ensure national security and emergency preparedness (NS/EP) services remain available to respond to terrorist incidents or natural disasters.

History of NSTAC Actions and Recommendations

The President’s National Security Telecommunications Advisory Committee (NSTAC) consideration of the interdependencies between the telecommunications and electric power sectors began in 1983 with the committee’s response to a Government request for industry’s perspective on the options available to industry and Government for improving the electromagnetic pulse (EMP) survivability of the Nation’s telecommunications networks. Based on the analysis conducted by its EMP Task Force, the committee provided several recommendations to the President on the issue in its *Electromagnetic Pulse Final Task Force Report.*

In 1986, the Telecommunications Systems Survivability (TSS) Task Force initially reviewed the vulnerability of telecommunications to the loss of commercial electric power and presented the findings of its *Telecommunications Systems Survivability Electric Power Survivability Status Report* at the February 8, 1987, NSTAC VII Meeting. The TSS Task Force concluded the telecommunications industry would be extremely vulnerable to an extended electric power outage. As a result, the NSTAC recommended to the President that Government initiate a study to identify options for ensuring electric power survivability as it related to telecommunications.

As a follow-up to its vulnerability analysis, the committee established the Energy Task Force, which it charged with analyzing solutions to mitigate against the effects of electric power outages on telecommunications. In 1988, the Energy Task Force, with participation from the Department of Energy (DOE), the National Communications System (NCS), and the North American Electric Reliability Council undertook its activities, examining interdependencies between the two sectors after a major earthquake.
In October 1991, the NSTAC established a follow-on Energy Task Force and charged it to support the NCS in its efforts with DOE to develop criteria and a process for identifying critical industry NS/EP telecommunications facilities that qualify for electric power restoration and priority fuel distribution. Based on the task forces analysis, the NSTAC issued its recommendations to the President on the issue in its Energy Task Force Final Report in 1993.

On March 8, 1994, the NS/EP Panel discussed power outages that occurred during winter storms on the East Coast and during the Northridge earthquake, and their effect on telecommunications. The panel agreed that a call from the power companies would have alerted carriers to the impending rolling blackouts and the need to switch to an emergency backup power source.

Interdependency issues arose again as a result of extensive power and telecommunications outages during the hurricane season of 2004 in the southeast region of the United States. Mr. F. Duane Ackerman, then Chairman and Chief Executive Officer of BellSouth and NSTAC Chair, highlighted his concerns about the situation in his speech at the Research and Development Task Force’s October 2004 Research and Development Exchange Workshop in Monterey, California. Due to the dependence of the telecommunications network on electric power services, Mr. Ackerman noted the need for enhanced and alternative emergency power technologies. In addition, as the network becomes increasingly distributed, he noted that issues of reliability and ease of communication and coordination between the telecommunications and electric power industries will become increasingly important during natural disasters or terrorist incidents.

As a result, in 2005, the NSTAC established the Telecommunications and Electric Power Interdependency Task Force to further evaluate how the telecommunications and electric power sector interdependencies will affect the future of the telecommunications network. The task force subsequently divided the work into two streams—an examination of the people and processes involved in national security communications and restoration and an evaluation of the technological implications of future events.

Based on the completion of the first work stream, the NSTAC issued its People and Processes: Current State of Telecommunications and Electric Power Interdependencies Report in January 2006. In the report, the NSTAC recommended that the President direct his departments and agencies to:

- Define and establish the term Emergency Responder within the National Response Plan (NRP), now the National Response Framework (NRF), and other appropriate plans, guidance, directives, and statutes, including other local, State and Federal Government emergency plans;

- Ensure key response personnel of critical infrastructure owners and operators in the telecommunications and electric power sectors be designated as Emergency Responders;

- Include fuel supply, security, site access, and other required logistical support to critical telecommunications and electric power infrastructures as part of the Emergency Responder planning process to ensure priority restoration to critical telecommunications and electric power;

- Foster and promote effective emergency coordination structures to ensure reliable and robust communication between the two sectors and local, regional, State, and Federal Governments;

- Review examples of proven priority restoration models at the State and regional levels. Encourage States and metropolitan regions without effective models to improve and update their existing frameworks; and

- Encourage effective information sharing models at the local/regional Emergency Responder level, both in advance of a natural disaster and during the emergency restoration period. When developing these models, liability issues should be considered.
Throughout 2006, the NSTAC continued its examination of long-term interdependency issues. Specifically, the NSTAC defined the “long-term outage” (LTO) phenomenon—an interruption of communications and/or electricity for a period long enough, and within a large enough geographic region, to hamper the provision of telecommunications and electric power even by alternative means. Such an outage has not occurred in North America to date, but could occur in any critical infrastructure and, in the worst case, have a cascading effect on other sectors. The NSTAC focused its research on an evaluation of technological interdependencies that will affect telecommunications networks in the future. Based on its investigation of the LTO phenomenon, the NSTAC issued its final report, *The NSTAC Report to the President on Telecommunications and Electric Power Interdependencies: The Implications of Long-Term Outages*, in December 2006.

In the report, the NSTAC recommended that the President direct his departments and agencies to:

- Commission a Government-funded, cross sector and cross border engineering analysis of the North American telecommunications and electric power infrastructures, with attention given to further international considerations, to determine the interdependencies in LTO situations for both the current and the next generation network environment, and to estimate the attendant costs of mitigation strategies, including the following:

 - Investigating how dependencies and interdependencies will be affected by technology and structural changes in both sectors; and

 - Supporting exercises at the local, State, regional, national, and international level that investigate the dependencies and interdependencies between the two sectors during an LTO.

- Analyze and evaluate current governance procedures applicable to an LTO to determine the appropriate transition from local to national management authority during an LTO. Internet recovery issues (as they relate to the convergence of the telecommunications network) should also be reviewed, but such a review should not be limited to an LTO event.

- To reduce dependencies between the sectors and maintain a minimum level of internal service availability during an LTO, vigorously support selected science and technology applications, including the following:

 - Transformer Prototype Technology,

 - Power Conservation Technology for Telecommunications, and

 - Fuel Cell Technology.

- In concert with industry, support the advent and development of cross sector situational analysis tools to facilitate information sharing between industry and Government in advance of, during, and after an LTO.

- As stated in the *NSTAC Report to the President on People and Processes: Current State of Telecommunications and Electric Power Interdependencies*, continue to promote increased collaboration between both the telecommunications and electric power sectors and emergency management authorities at the local, regional, State, national, and international levels to facilitate recovery from an LTO.

Actions Resulting from NSTAC Recommendations

In response to the devastation caused by Hurricanes Katrina, Rita, and Wilma, the Federal Communications Commission established the Independent Panel Reviewing the Impact of Hurricane Katrina on Communications Networks. In its final report, the Panel expressed support for the NSTAC’s recommendation to establish a national standard for credentialing telecommunications repair workers as well as its recommendation to designate telecommunications infrastructure providers as “emergency responders” under the *Robert T. Stafford Disaster Relief and Emergency Assistance Act (Stafford Act)*, the NRP (now the NRF), and other legislative documents as appropriate.
Access, security, and fuel support for industry essential service providers (ESP) is included in the Emergency Support Function (ESF) 2—Communications Annex of the NRF.

Furthermore, Section 607 of the Security and Accountability for Every Port Act of 2006, which President George W. Bush signed into law on October 13, 2006, amended the Stafford Act by providing a list of essential services whose providers may be defined as ESPs. The Act listed privately owned telecommunications among those services, and declared that Federal agencies may not prevent ESPs from accessing disaster sites or otherwise impede their efforts to conduct response and recovery of the telecommunications infrastructure “to the greatest extent possible.” While the measure partially addresses the NSTAC’s concern about site access, it does not clarify that telecommunications infrastructure providers may have access to non-monetary Federal resources during and following a disaster. ESPs include both telecommunications and electric power professionals.

Additionally, the Department of Homeland Security, in partnership with Federal, State, and local Government entities, as well as a private sector company, developed an access SOP to ensure that private critical infrastructure responders receive priority access to disaster areas. Out of state telecommunications and electric power service providers must meet the same criteria as local service providers, including placement on the authorized list or having appropriate credentials. The access SOP had been adopted by the State of Georgia and will be used a model for other States.

In an effort to engage State and local emergency managers, NCS Regional Managers and Regional Communications Coordinators are involved in regional committees, working groups, and planning efforts, such as the Federal Emergency Management Agency Regional Interagency Steering Committee meetings and Regional Emergency Communications Coordinator Working Group meetings. Through these forums, the NCS is working to ensure planning efforts include access, security, and fuel; and compile existing plans that deal with these issues. The NCS is posting the plans and procedures on the Homeland Security Information Network so that industry partners can ensure their ESPs satisfy requirements to receive appropriate designations and are granted access to incident areas. The NCS is also coordinating with ESF-13, Public Safety and Security, and the Office of Infrastructure Protection’s regionally based Protective Security Advisors to address access, security, and fuel issues and provide input into their planning documents.

In July 2007, the NCS Committee of Principals (COP) established the Communications Dependency on Electric Power Working Group (CDEP WG) in response to recommendations in the President’s NSTAC Report on Telecommunications and Electric Power Interdependencies. As one of its activities, the CDEP WG sponsored an LTO Workshop on April 8–9, 2008, to examine the dependencies and interdependencies between the communications and electric power sectors and to shape the scope of a future Government engineering analysis. The Workshop was organized into five topic areas covering ten task areas being investigated by the CDEP WG. Attendees drafted recommendations during the Workshop on governance, science and technology research and development, the electric industry approach to LTO prevention and recovery, situational analysis tools, collaboration between the power and telecommunications sectors during an LTO, and planning of an LTO in National exercises. The CDEP WG will use the results of the workshop in drafting its final report to the COP.

The COP also established the Technical Assistance Team to build communications injects into NCS and COP member entities’ exercise programs, which will likely include activities surrounding the need to facilitate access, security, and fuel for industry ESPs.

Reports Issued

The NSTAC Report to the President on Telecommunications and Electric Power Interdependencies: The Implications of Long-Term Outages, December 2006.
Enhanced Call Completion

Investigation Group / Period of Activity

Industry Executive Subcommittee (IES) Funding and Regulatory Working Group (FRWG)
(Assured access)
June 1990 – September 1990
(Regulatory aspect of call-by-call preferential treatment)
July 1993 – December 1993

Enhanced Call Completion (ECC) Task Force
December 1990 – July 1992

ECC Ad Hoc Group
July 1992 – August 1993

Issue Background
Following its reactivation after NSTAC XI, the NSTAC IES tasked the FRWG to investigate NS/EP issues affecting assured access to the public switched network (PSN). During FRWG discussions with the Government, the group agreed that assured access was only one component of the Government’s need for enhanced NS/EP call completion. The group defined assured access as priority access to, transportation through, and egress from the PSN for NS/EP users when portions of the PSN were either physically isolated or too congested to permit unhindered access and call completion.

The FRWG prepared a study addressing the regulatory and technical components of assured access. The study reported that at its initial meeting, the FRWG concluded that the Government required enhanced call completion for NS/EP traffic. The FRWG members agreed, however, that they must further define the technical features of the issue before identifying regulatory issues.

On August 22, 1990, the FRWG recommended that it establish an ECC Task Force to determine how existing and evolving technologies could best be exploited to enhance the priority access, transport, and egress of NS/EP traffic. The FRWG’s study also stated that the proposed task force should evaluate the Intelligent Networks Task Force Final Report and recommendations, and coordinate its efforts with those of the OMNCS to avoid duplication.

Following the FRWG’s investigation of issues affecting assured access to the PSN by NS/EP callers and its subsequent recommendations, the NSTAC, at its December 13, 1990, meeting charged the IES to establish a task force to review the issue of enhancing call completion for NS/EP users during periods of congestion. Specifically, the IES directed the task force to identify technical approaches and to recommend a plan of action for obtaining enhanced call completion in both the near and long term.

The ECC Task Force studied existing and evolving technologies that would provide the NS/EP user PSN access and call completion without interruption, with minimum delay, and on a preferential basis during network damage or congestion. During its 18-month investigation, the task force identified 26 current or planned enhanced call completion features and defined their NS/EP application, availability, and acquisition procedures. The task force also determined the importance of the High Probability of Call Completion (HPC) standard in implementing an NS/EP call identifier to provide call-by-call preferential treatment and to enhance existing PSN features.

At the July 17, 1992, NSTAC XIV Meeting, members approved the ECC Task Force’s report for forwarding to the President, the two proposed recommendations to the President, and the proposed NSTAC XIV charges to the IES. In response to these charges, the IES deactivated the ECC Task Force and established an ad hoc group to work with the Government to:

► Advocate and support approval of the HPC standard, investigate potential ECC regulatory issues with the FRWG and implement ECC network capabilities.

At the August 2, 1993, IES Meeting, members approved the deactivation of the ECC Ad Hoc Group, which had completed its work. The group served as a forum for issues such as cellular priority access,
preferential access for North Atlantic Treaty Organization countries, and future broadband services. It assisted the Government in its effort to obtain approval of the HPC standard—published as American National Standards Institute T1.631 in August 1993. The group also worked closely with the Government to develop ECC features demonstration scenarios. It met with the GETS integrator and Government contractors to discuss demonstration plans and scenarios.

As part of its charge to inform the Government about ECC services affecting the National Level NS/EP Telecommunications Program initiatives, the group assisted the Government in developing educational materials such as the *ECC Services Cost/Benefit Analysis Report*, and the 1993 *National Communications System (NCS) Member Agency Telecommunications Enhancement Handbook*. The group worked with the Government in addressing potential regulatory impediments to implementing enhanced call completion services. It framed and defined significant elements in the call-by-call preferential treatment issue before forwarding the issue to the FRWG for its action.

In July 1993, the FRWG responded to an April 14, 1993, memorandum to the NCS Executive Agent directing the NCS to work with the FRWG to investigate potential regulatory issues arising from the implementation of enhanced call completion attributes for NS/EP activities. The FRWG explored whether the prohibition of undue preferences in Section 202(a) of the Communications Act of 1934, as amended, required a specific FCC regulation authorizing the provision of priority calling features to NS/EP users of the PSN.

The FRWG determined FCC approval of preferential treatment would benefit both industry and Government. Following IES approval, the OMNCS forwarded a letter to the FCC requesting that the Commission issue an opinion regarding whether common carriers may provide call-by-call priority service for connecting emergency calls over the public switched network. The FCC responded by issuing a Public Notice on January 7, 1994, which requested that public comments be filed with the Commission by February 15, 1994, and that reply comments be filed by March 1, 1994. The OMNCS filed reply comments with the FCC on March 1, 1994, requesting that the Commission issue a favorable opinion.

On August 30, 1995, the FCC responded to the OMNCS regarding the call-by-call priority issue. In its letter, the FCC stated that the request for declaratory ruling filed on November 29, 1993, was moot because lawful tariffs implementing the federally managed GETS program had gone into effect. Call-by-call priority is a feature of the GETS program. Therefore, the FCC dismissed the petition for declaratory ruling without prejudice.

History of NSTAC Actions and Recommendations

On December 13, 1990, NSTAC XII charged the IES to establish the ECC Task Force as a result of the FRWG’s investigation of assured access issues.

On July 17, 1992, NSTAC members approved the ECC Task Force’s report for forwarding two proposed recommendations to the President:

- The Government should take the following steps to enhance call completion for NS/EP users:
 - Take advantage of existing and emerging services, features, and capabilities in the PSN
 - Continue to support the near-term adoption of the HPC standard by the Exchange Carriers Standards Association T1 Committee
 - Investigate the NS/EP advantages of a calling name delivery service
 - Work with NSTAC’s FRWG to investigate potential regulatory issues
 - Sponsor industry ECC forums to further define ECC and resolve implementation issues.

- The Government should use the ECC Task Force report as a reference for modifying or implementing current or future services and technologies. In response to NSTAC XIV charges,
the IES established the ECC Ad Hoc Group. On August 2, 1993, IES members deactivated the ECC Ad Hoc Group.

Actions Resulting from NSTAC Recommendations

In response to an NSTAC XIV recommendation from the ECC Task Force, the White House issued a memorandum to the NCS Executive Agent on April 14, 1993, directing the NCS to work with the FRWG to investigate potential regulatory issues arising from the implementation of ECC attributes for NS/EP activities. The FRWG sought to clarify whether prohibitions of undue preferences in the *Communications Act of 1934* required a specific FCC regulation to authorize the provision of priority calling features to NS/EP users of the public switched network. The FCC resolved the issue on August 30, 1995, when the FCC informed the OMNCS of its decision regarding the call-by-call priority issue.

Reports Issued

Financial Services

Investigation Group / Period of Activity

Financial Services Task Force
March 2003 – April 2004

Issue Background
In November 2002, the Federal Reserve Board (FRB) and BITS—a nonprofit industry consortium of the 100 largest financial institutions in the United States that focuses on issues related to security, crisis management, e-commerce, payments, and emerging technologies—briefed the IES of the NSTAC on the significant dependence of the financial services (FS) sector on the telecommunications infrastructure to support core payment, clearance, and settlement processes of financial institutions. Given that dependence, disruption of telecommunications services could hamper critical financial services processes, potentially affecting the national economy. To minimize operational risks and ensure the timely delivery of critical financial services, the FRB recommended that the NSTAC analyze telecommunications infrastructure issues pertaining to network redundancy and diversity.

The NSTAC, therefore, established the Financial Services Task Force (FSTF) to conduct the analysis during NSTAC Cycle XXVII.

History of NSTAC Actions and Recommendations
The FSTF emphasized that the concept of resiliency and its components of diversity, redundancy, and recoverability are critical to understanding some of the NS/EP issues currently challenging the FS and telecommunications industries. The task force acknowledged that it is imperative for the FS sector to maintain diversity as a component of resiliency. The primary challenges identified by the FSTF with respect to diversity were the failure of critical services resulting from loss of diversity; the ability to ensure that diversity is predictable and continually maintained; and the potential for lack of clear understanding of terms and conditions in telecommunications contracts or tariffs (and the potential for resulting confusion when financial services institutions establish business continuity plans).

The FSTF recognized that without a real-time process to guarantee that a circuit’s path or route is static and stable, an NS/EP customer cannot be assured at all times that the diversity component of the resiliency plan will retain its designed characteristics. However, the telecommunications infrastructure was designed and engineered based on a business model directed at the general public. When necessary, networks have been modified or developed to meet specific needs at the customer level except where limited by the available technology or a customer’s willingness to purchase unique requirements.

The FSTF emphasized that all interested parties should support research and development activities for improving managed network solutions and alternative technologies as a potential means for achieving high resiliency for the FS customer base. Targeted capital incentives should also be considered as a tool to encourage critical infrastructure owners, including the FS sector, to make the necessary investments to mitigate telecommunications resiliency risks to their business operations. Appropriately structured capital recovery incentives for critical business operations could be used to accelerate immediate investments to mitigate vulnerabilities to critical NS/EP operations.

The FSTF also noted that when different business continuity strategies cannot fully guarantee operational sustainability, specifically engineered and managed efforts might be required. The degree of assurance that a business operation deems adequate to achieve a high level of resiliency will dictate the decisions and the appropriate approach to be pursued. To that end, the task force concluded that cross-sector assessments or customer-provider assessments would remain useful tools to facilitate better understanding of the need for resiliency. Indeed, FSTF members acknowledged the importance of promoting mutual understanding among the FS and telecommunications sectors to
effectively address NS/EP-related issues. Both sectors pledged to continue in their efforts to engage members of their communities, as well as the public sector, in a constructive dialogue to foster mutual understanding of their operations and unique needs. Furthermore, the framework that the FSTF developed to analyze the dependencies of the FS sector on the telecommunications industry could be adapted to conduct risk assessments of other critical infrastructures.

On the basis of the FSTF report, the NSTAC recommended that the President:

- Support the Alliance for Telecommunications Industry Solutions’ (ATIS) National Diversity Assurance Initiative and develop a process to:
 - Examine diversity assurance capabilities, requirements, and best practices for critical NS/EP customers and, where needed
 - Promote research and development to increase resiliency, circuit diversity, and alternative transport mechanisms.

- Support financial services sector initiatives examining:
 - The development of a feasible “circuit-by-circuit” solution to ensure telecommunications services resiliency
 - The benefits and complexities of aggregating sectorwide NS/EP telecommunications requirements into a common framework to protect national economic security.

- Coordinate and support relevant cross-sector activities (e.g., standards development, research and development, pilot initiatives, and exercises) in accordance with guidance provided in Homeland Security Presidential Directive 7 (HSPD-7).

- Provide statutory protection to remove liability and antitrust barriers to collaborative efforts when needed in the interest of national security.

- Continue to promote the Telecommunications Service Priority program as a component of the business resumption plans of financial services institutions.

- Promote research and development efforts to increase the resiliency and the reliability of alternative transport technologies.

- Examine and develop capital investment recovery incentives for critical infrastructure owners, operators, and users that invest in resiliency mechanisms to support their most critical NS/EP telecommunications functions.

Actions Resulting from NSTAC Recommendations

In response to the FSTF report, ATIS agreed to work with the FRB on an in-depth assessment of diversity assurance. A final report on the assessment was completed in February 2006. Representatives from ATIS also visited the IES to brief them on the findings and recommendations discussed in the assessment.

Reports Issued

Funding of NSTAC Initiatives

Investigation Group / Period of Activity

Funding of NSTAC Initiatives (FNI) Task Force
April 1984 – December 1984

Issue Background

On April 3, 1984, the NSTAC agreed to address the funding of NSTAC initiatives issue to determine the costs and benefits associated with its recommendations to the Government. The purpose of FNI was to guide and prioritize NSTAC actions. In August 1984, the FRWG established the FNI Task Force to investigate approaches to NSTAC funding mechanisms.

History of NSTAC Actions and Recommendations

On December 12, 1984, the NSTAC approved the funding methodology developed by the FNI Task Force and instructed the IES to:

- Adopt the methodology developed by the FNI Task Force;
- Issue the funding methodology as guidance to all existing and future task forces; and
- Direct all task forces to determine costs, benefits, and applicable funding mechanisms for each recommended initiative.

The NSTAC instructed all NSTAC task forces and working groups to apply the FNI funding methodology to the recommendations they developed. The FRWG assists all active and future NSTAC task forces, when necessary, in providing cost/benefit estimates and proposed funding mechanisms for all recommended initiatives using the guidelines from the funding report.

Actions Resulting from NSTAC Recommendations

The FRWG (reconvened March 1990) reviewed the NSTAC funding methodology and worked with the Enhanced Call Completion Task Force to develop an order-of-magnitude cost model for use by all task forces.

Reports Issued

NSTAC Funding Methodology, October 25, 1984.
Globalization

Investigation Group / Period of Activity

National Information Infrastructure (NII) Task Force
August 1993 – March 1997

Operations Support Group (OSG)
April 1997 – September 1999

Information Infrastructure Group (IIG)
April 1997 – September 1999

Globalization Task Force (GTF)
September 1999 – May 2000

Issue Background

In 1993, the NSTAC established an NII Task Force and charged it with examining the implications of the evolving U.S. information infrastructure for NS/EP communications. The NII Task Force observed that the NII’s connectivity to the emerging Global Information Infrastructure (GII) potentially presented both opportunities and risks for NS/EP communications. In its March 1997 report to NSTAC XIX, the NII Task Force concluded that the pervasive and rapidly evolving nature of the GII necessitated a continuing effort by NSTAC task forces and working groups to track the GII’s implications for NS/EP communications.

As a result, the NSTAC IES tasked the OSG in April 1997 to monitor the U.S. information infrastructure’s global interfaces, because of the potential for increased vulnerabilities adversely affecting the national interest. Specifically, the OSG gathered information on the International Telecommunication Union’s Global Mobile Personal Communications by Satellite Memorandum of Understanding. In October 1998, the IES tasked the IIG to conduct a forward-looking analysis of the GII and associated NS/EP opportunities and challenges.

During a reorganization of the IES and its working group structure in September 1999, the IES formed the GTF to continue to address the GII issue. Specifically, the IES tasked the GTF with developing a “picture” of the GII in 2010, identifying NS/EP issues. The GTF was also given two additional tasks that were global in scope: assessing the security implications of foreign ownership of telecommunications networks and examining export policies dealing with the transfer of strong encryption products, satellite technology, and high-performance computers.

During the NSTAC XXII and XXIII cycles, the IIG and GTF researched and gathered information from industry and Government experts on emerging space-, airborne-, and land-based communications systems and services. These information gathering activities provided the GTF with the insights needed to characterize the GII in 2010 and draw conclusions about NS/EP telecommunications preparedness.

Drawing on these insights, the GTF was able to describe what physical network elements, services, and protocols might be prominently featured in 2010, paying specific attention to the global homogenization of communications capabilities, expected improvements to quality of service and network assurance, and the ubiquity and availability of advanced communications technologies as pertaining specifically to NS/EP users. The GTF documented its analysis in its May 2000 report to NSTAC XXIII. Based on that analysis, the NSTAC recommended that the President direct appropriate departments and agencies to:

- Conduct exercises in those areas and environments in which NS/EP operations can be expected to take place to ensure that the required high-capacity, broadband access to the GII is available; and
- Ensure that NS/EP requirements, such as interoperability, security, and mobility, are identified and considered in standards and technical specifications as the GII evolves to 2010.
and identify any specialized services that must be developed to satisfy NS/EP requirements not satisfied by commercial systems.

In addition, the LRWG assisted the GTF in assessing the security implications of foreign ownership of telecommunications networks. The LRWG examined domestic regulatory history and conducted analyses of several mergers and acquisitions between domestic and foreign telecommunications carriers. Through the case studies, the group found that the current regulatory structure satisfied the different interests of the parties involved. The LRWG concluded that it was unclear whether further statutory or regulatory changes would effectively enhance the role of national security issues in foreign ownership situations at this time. The GTF May 2000 report to NSTAC XXIII includes the LRWG analysis of the issue.

Based on the GTF’s report, the NSTAC recommended that the President:

- Ensure that the review process for commercial arrangements involving foreign ownership remains adequate to protect NS/EP concerns as the environment evolves and becomes more complex.

Lastly, addressing technology export, the GTF compiled some basic information on the key technology export issue areas. Given that technology progresses faster than export policy can keep up with it, the GTF recommended continued monitoring of developing export policies and regulations. The GTF also investigated guidelines to assist companies in understanding Government approval of technology sales. The GTF completed its tasking to scope the issue of technology export, concurring with the Government’s efforts to periodically reevaluate the limits placed on the export of technologies.

Reports Issued

Industry/Government Information Sharing and Response

Investigation Group / Period of Activity

National Coordinating Center for Telecommunications (NCC) Vision Task Force
October 1996 – April 1997

Operations Support Group (OSG)
April 1997 – September 1999

Information Sharing/Critical Infrastructure Protection (IS/CIPTF) Task Force
September 1999 – May 2000

Issue Background
The NSTAC formed the National Coordinating Mechanism (NCM) Task Force in December 1982 to facilitate industry/Government response to the Government’s growing NS/EP telecommunications service requirements in the post-divestiture environment. The task force submitted its final report, the NCM Implementation Plan, to the NSTAC on January 30, 1984. That report led to formation of the NCC, an emergency response coordination center that supports the Government’s NS/EP telecommunications requirements.

Since 1984, threats to the NS/EP telecommunications infrastructure changed significantly. In response, the NSTAC IES established the NCC Vision Task Force in October 1996 to consider the implications of the new environment for the functions performed by the NCC. The IES charged the task force to determine whether the mission, organization, and capabilities of the NCC were still valid, considering the ongoing changes in technology, industry composition, threats, and requirements. Following the IES group reorganization in April 1997, the task force became the NCC Vision Subgroup and later the NCC Vision-Operations Subgroup under the OSG.

In 1997, the NSTAC also revisited the original concept for an industry/Government mechanism to coordinate planning, information sharing, and resources in response to NS/EP requirements. Unlike the original NCM plan that applied to the telecommunications infrastructure, this revised NCM concept involved linking all the Nation’s critical infrastructures (e.g., telecommunications, financial services, electric power, and transportation). In July 1997, the OSG created the NCM Subgroup to explore the need for and feasibility of an NCM across infrastructures.

In May 1998, the President released PDD-63, a critical infrastructure protection directive calling for, among other things, industry participation in the Government’s efforts to ensure the security of the Nation’s infrastructures. As it continued to refine the NCM concept, the NCM Subgroup considered this Government initiative.

In September 1998, the OSG formed the Year 2000 (Y2K) Subgroup to address several Y2K issues raised at the NSTAC XXI meeting, including the need for Y2K outreach efforts, the need to emphasize contingency planning and restoration scenarios, the potential for public overreaction to the Y2K problem, and the lack of a global approach to handle Y2K problems that were international in scope. The effort was a continuation of earlier efforts by the NCC Vision-Operations Subgroup, which began a study of the NCC’s operational readiness and coordination capabilities for potential public network disruptions caused by the Y2K problem.

Following NSTAC XXII the IES tasked the OSG to examine potential lessons learned from Y2K experiences that could be applied to critical infrastructure protection efforts. The OSG focused on the experiences of the NCC to determine how its operations during the Y2K rollover period translated into functions to be performed as ISAC (in accordance with PDD-63). In addition the OSG continued to monitor enhancements to the NCC that ensured an electronic Indications, Assessment, and Warnings (IAW) capability to support the ISAC function.
In September 1999 following a reevaluation of NSTAC working groups, the IES created the IS/CIPTF to examine mechanisms and processes for protected, operational information sharing that would help achieve the goals of PDD-63 and further the role of the NCC as an ISAC for telecommunications. In addition, the IES directed the IS/CIPTF to continue, through outreach efforts, interaction with Government leaders responsible for PDD-63 implementation.

History of NSTAC Actions and Recommendations
During 1997, the NCC Vision Subgroup worked closely with the NCS member organizations and NCC industry representatives to develop a common framework for assessing the NCC’s ongoing role. The subgroup validated the original 10 NCC chartered functions and updated the NCC Operating Guidelines (both written in 1984) for the current operational environment. The subgroup also determined that an electronic intrusion incident information processing function could be integrated into the NCC’s activities. In August 1997, the subgroup held an industry/Government tabletop exercise to test the draft concept of operations for NCC intrusion incident information processing. The OSG documented the subgroup’s activities and accomplishments in the OSG’s report to the December 11, 1997, NSTAC XX Meeting.

The NSTAC approved the OSG’s NSTAC XX report and recommended that the President:

► Establish a mechanism within the Federal Government with which the NCC can coordinate intrusion incident information issues and with which NSTAC groups can coordinate the development of standardized reporting criteria.

The NSTAC also endorsed NCC implementation of an initial intrusion incident information processing pilot based on voluntary reporting by industry and Government.

In 1998, the NCC modified its standard operating procedures to accommodate an electronic intrusion incident information processing capability. With the OSG’s support and assistance, the NCC began its intrusion incident information processing pilot on June 15, 1998. The NCC Vision-Operations Subgroup worked closely with the OMNCS and the Manager, NCC, as the NCC implemented the intrusion incident processing pilot, which it completed in October 1998. In addition, the NCC Vision-Operations Subgroup developed a paper, the NCC Intrusion Incident Reporting Criteria and Format Guidelines, to establish standardized reporting criteria and to outline steps in NCC electronic intrusion report collection, processing, and distribution. The OSG report to NSTAC XXI includes the paper.

Leading up to NSTAC XX, the NCM Subgroup met jointly with the Information Infrastructure Group’s IA Policy Subgroup and produced a joint report. The report concluded that the revised NCM concept provided the framework for the Federal Government and the private sector to address solutions to infrastructure protection concerns. The OSG included the joint report in its full NSTAC XX report, which the NSTAC approved. Specifically, the NSTAC recommended that the President:

► Direct the appropriate departments and agencies to work with the NCS and NSTAC in further investigating the NCM concept.

Subsequently, IES representatives presented the revised NCM concept to senior Government officials to aid the Administration’s efforts to establish national policy on the protection of critical national infrastructures.

Throughout the NSTAC XXI cycle, the OSG considered the infrastructure protection efforts of the Federal Government in conjunction with the enhanced role of the NCC. IES and NCM Subgroup members met with members of the National Infrastructure Protection Center (NIPC) to address the role of industry in the Government’s new IA environment. The Government created the NIPC in February 1998 as a national critical infrastructure threat assessment, warning, vulnerability, law enforcement investigation, and response entity. The NIPC’s mission is to detect, deter, assess, warn of, respond to, and investigate computer intrusions and
unlawful acts, both physical and cyber, that threaten or target the Nation’s critical infrastructures. As a result of these meetings, the NCC and NIPC began to develop processes to detail the flow of information between the two entities.

At the end of the NSTAC XXI cycle, the OSG concluded that the NCC provided a model for all infrastructures by which information could be gathered, analyzed, sanitized, and provided to the Government. In addition, regarding PDD-63 implementation, the OSG concluded that more than one individual or entity would be needed to serve as the sector coordinator to represent the highly diverse information and communications sector. The NSTAC approved the OSG’s September 1998 report to NSTAC XXI and recommended that the President direct the lead departments and agencies as designated in PDD-63 to:

- Consider adapting the NCC model as appropriate for the various critical infrastructures to provide warning and information centers for reporting and exchange of information with the NIPC through the NCM process; and

- Establish an industry/Government coordinating activity to advise in the selection of a sector coordinator and provide continuing advice to effectively represent each critical infrastructure.

Following NSTAC XXI, the OSG’s NCC Vision-Operations Subgroup worked closely with the OMNCS and the Manager, NCC, as the NCC continued its electronic intrusion incident processing function. The subgroup continued to assist the NCC in evaluating any needed revisions to the IAW reporting criteria and format guidelines.

The OSG’s NCC Vision-Operations Subgroup also assessed whether the NCC requires additional industry and Government participation within the NCC to widen the scope of expertise and operational personnel available to fulfill the IAW mission. During the NSTAC XXII cycle, the subgroup developed a list of companies and Government departments and agencies for the Manager, NCS, to consider as candidates for participation in the NCC.

PDD-63 established the concept of an ISAC that would be a private sector entity responsible for gathering, analyzing, sanitizing, and disseminating to industry private sector information related to vulnerabilities, threats, intrusions, and anomalies affecting the critical infrastructures. At the end of the NSTAC XXII cycle, the OSG concluded that the NCC already performed the primary functions of an ISAC for the telecommunications sector and that industry and Government should establish it as such.

The OSG’s Y2K Subgroup investigated domestic and international Y2K preparedness and contingency planning efforts for the telecommunications infrastructure. The subgroup held a number of informational meetings with Government representatives to address ongoing Y2K readiness and contingency planning efforts. To understand public concerns about the Y2K problem, the Y2K Subgroup also investigated the initiatives of grassroots Y2K community forums and those groups promulgating “doomsday” scenarios. The subgroup’s findings are included in the OSG’s June 1999 NSTAC XXII report.

Based on that report, the NSTAC recommended that the President:

- Direct the President’s Council on Y2K Conversion and the Federal Government continue providing timely, meaningful, and accurate Y2K readiness and contingency planning information related to the information and communications critical infrastructures to State and local governments, thereby enhancing the flow of information to the general public and community Y2K groups.

Actions Resulting from NSTAC Recommendations
The NSTAC’s support for the evolving role of the NCC helped pave the way for the establishment of the NCC as an ISAC for telecommunications under the provisions of PDD-63. During 1997, the NSTAC advocated and later endorsed the NCC’s
implementation of an electronic intrusion incident reporting capability based on voluntary reporting by industry and Government. In January 2000, the National Security Council agreed with the NSTAC’s 1999 conclusion that the NCC was performing the primary functions of an ISAC. In March 2000, the NCC formally achieved initial operating capability as an ISAC for the telecommunications sector.

Following the October 21, 2004, Principals Conference Call, the NSTAC formed the National Coordinating Center Task Force (NCCTF) to examine the future mission and role of the NCC. Please see the NCC section in the Previously Addressed Issues section of this NSTAC Issue Review for further information.

Reports Issued

Industry Information Security

Investigation Group / Period of Activity

Industry Information Security (IIS) Task Force
August 1986 – September 1988

Issue Background
Based on widespread concern within the Government regarding the protection of sensitive but unclassified information, the President requested that the NSTAC identify initiatives that would facilitate the protection of sensitive information processing systems. On August 19, 1986, the NSTAC IES established the IIS Task Force to develop industry’s perspective on the issue. The original IIS Task Force defined and identified sensitive information categories, the relationship between telecommunications and automated information systems, an analysis methodology, and areas for further investigation. The IIES then established a follow-on IIS Task Force to improve information security in telecommunications and automated information systems. The IIS Task Force submitted its final report to the NSTAC on September 22, 1988. It contained 10 conclusions and eight recommendations. The NSTAC approved the report and forwarded it to the President.

History of NSTAC Actions and Recommendations
On September 22, 1988, the NSTAC approved the IIS Task Force final report and forwarded it to the President.

Actions Resulting from NSTAC Recommendations
The NSA continued and expanded the Protected Communication Zone program. NSA developed standardized encryption modules for terminal unit platforms and reendorsed the Data Encryption Standard algorithm. Federal agencies continued the information security education program.

Reports Issued

Influenza Pandemic

Investigation Group / Period of Activity

Pandemic Study Group

Issue Background
An influenza pandemic has the potential to present an array of threats to the integrity of the Nation’s communications system. Widespread contagion could incapacitate vital service workers and quarantine requirements could generate network overloads as a result of mass telecommuting. Therefore, contingency planning is key to the survivability of necessary national security and emergency preparedness (NS/EP) services.

History of NSTAC Actions and Recommendations
At the request of the National Infrastructure Advisory Council (NIAC), and in response to a joint Department of Homeland Security and Department of Health and Human Services appeal for assistance, the President’s National Security Telecommunications Advisory Committee (NSTAC) worked in partnership with the council to develop guidance for the Government on critical services that must be maintained across the Nation’s infrastructures in the event of a pandemic. Consequently, the NSTAC undertook the responsibility to formulate prioritization recommendations for the telecommunications infrastructure so that NS/EP services that rely heavily on the sector can remain stable and usable under any circumstances.

Reports Issued

Information Assurance

Investigation Group / Period of Activity

Information Assurance Task Force (IATF)
May 1995 – April 1997

Information Infrastructure Group (IIG)
April 1997 – September 1999

Financial Services Task Force (FSTF)
March 2003 – April 2004

Issue Background

At the NSTAC XVII Meeting, the Director of the National Security Agency briefed the NSTAC Principals on threats to U.S. infrastructures. In the ensuing months, the NSTAC’s Issues Group sponsored a number of meetings with representatives from the national security community, law enforcement, and civil departments and agencies to discuss information warfare (defensive) and IA issues. At the May 15, 1995, IES Working Session, the members approved establishing the IATF to serve as a focal point for IA issues. More specifically, the IES charged the IATF to cooperate with the U.S. Government to identify critical national infrastructures and their importance to the national interest, schedule elements for assessment, and propose IA policy recommendations to the President.

The IATF worked closely with industry and Government representatives to identify critical national infrastructures and ultimately selected three for study: electric power, financial services, and transportation. To address the distinctive characteristics of those infrastructures, the IATF established three risk assessment subgroups to examine each infrastructure’s dependence on information technology and the associated IA risks to its information systems. Following NSTAC XIX, the IES renamed the IATF the IIG and gave it the mission to continue acting as the focal point for NSTAC IA and CIP issues.

In investigating IA/CIP issues, the IIG worked closely with the President’s Commission on Critical Infrastructure Protection and other Federal organizations concerned with examining physical and cyber threats to the Nation’s critical infrastructures. Federal efforts in this arena culminated with the release of presidential policy guidance—PDD 63, Critical Infrastructure Protection, May 22, 1998. Subsequently, PDD-63 implementation became a focal point for the IIG’s activities.

History of NSTAC Actions and Recommendations

The IATF’s Electric Power Risk Assessment Subgroup completed its IA risk assessment report in preparation for the March 1997 NSTAC XIX Meeting. In compiling information for this report, the Electric Power Risk Assessment Subgroup met with representatives from eight electric utilities, two industry associations, an electric power pool, equipment manufacturers, and numerous industry consultants. Based on these interviews, the subgroup assessed the extent to which the infrastructure depends on information systems and how associated vulnerabilities placed the electric power industry at increased risk to denial-of-service attacks. Based on the subgroup’s findings, the NSTAC recommended that the President:

- Assign the appropriate department or agency to develop and conduct an ongoing program within the electric power industry to increase the awareness of vulnerabilities and available or emerging solutions;
- Establish an NSTAC-like advisory committee to enhance industry/Government cooperation regarding regulatory changes affecting electric power; and
- Provide threat information and consider providing incentives for industry to work with Government to develop and deploy appropriate security features for the electric power industry.

The IIG’s Financial Services Risk Assessment Subgroup submitted its final recommendations in a report to NSTAC XX in December 1997. In compiling
information for this report, the Financial Services Risk Assessment Subgroup conducted confidential interviews with institutions representing money center banks, securities credit firms, credit card associations, third-party processors, industry utilities, industry associations, and Federal regulatory agencies responsible for industry oversight. The subgroup found that industry organizations treated security measures as fundamental risk controls—that a system of independent, mutually reinforcing checks and balances within critical systems and networks was unique to the financial services industry, providing a high level of integrity. The subgroup concluded that at the national level the industry was sufficiently protected and prepared to address a range of threats. However, the subgroup identified security implications and potential vulnerabilities associated with the industry’s dependence on the telecommunications infrastructure being subjected to deregulation, the integration of dissimilar information systems and networks resulting from mergers and acquisitions, and the introduction of Web-based financial services. Based on the Financial Services Risk Assessment Report, the NSTAC recommended that the President:

- Assign to the appropriate department or agency the mission of identifying external threats and risk mitigation to the financial services infrastructure, facilitating the sharing of information between industry and Government;

- Assign the appropriate department or agency the task of working with the private sector to develop a mutually agreeable solution for effective background investigations for sensitive positions;

- Assign the appropriate department or agency the task of monitoring the new/emerging areas of electronic money and commerce, including new payment services; and

- Ensure that the NSTAC continues to have at least one member from the financial services industry.

The IIG’s Transportation Risk Assessment Subgroup sponsored a workshop on September 10, 1997, to discuss the transportation information infrastructure. Topics included intermodal information dependencies, industry/Government information sharing, transportation information infrastructure vulnerabilities, and Government understanding of the transportation industry’s information infrastructure vulnerabilities. The workshop, held at Fort McPherson, Georgia, included representatives from many major transportation companies, including airlines, multimodal carriers, rail, highway, mass transit, and maritime. The subgroup documented its findings in an Interim Transportation Information Risk Assessment Report to NSTAC XX in December 1997.

The IIG continued to investigate transportation information infrastructure issues through the NSTAC XXII cycle. As part of that effort, the IIG worked with Department of Transportation representatives to conduct outreach meetings with transportation industry associations to better understand intermodal transportation trends. The IIG also hosted another workshop on March 3 and 4, 1999, in Tampa, Florida, which included representation from each transportation sector. Participants discussed industry trends, including increased reliance on information technology and the rapid growth of intermodal transportation. Workshop findings were categorized into four areas:

(1) threats and deterrents, (2) vulnerabilities, (3) protection measures, and (4) infrastructure-wide issues. Based on the IIG’s final Transportation Risk Assessment Report, the NSTAC recommended that the President:

- Continue support for the efforts of the Department of Transportation to promote outreach and awareness within the transportation infrastructure as expressed in PDD-63, Critical Infrastructure Protection.

As part of the above recommendation, the NSTAC specifically recommended that the President and the Administration ensure support for the following activities:
Timely dissemination of Government information on physical and cyber threats to the transportation industry;

Government research and development programs to design infrastructure assurance tools and techniques to counter emerging cyber threats to the transportation information infrastructure;

Industry/Government efforts to examine emerging industry-wide vulnerabilities such as those related to the Global Positioning System; and

Future Department of Transportation conferences to simulate intermodal and, where appropriate, inter-infrastructure information exchange on threats, vulnerabilities, and best practices.

Following NSTAC XX, the IIG formed an Electronic Commerce (EC)/Cyber Security Subgroup to address two issues: the short-term, technical, and time-sensitive issue relating to cyber security training and forensics; and the long-term, policy oriented, high-level issue of the NS/EP implications of EC. In addressing the short-term issue, the subgroup found that industry and Government needed a stronger partnership to establish appropriate levels of trust and understanding and to foster cooperation in addressing cyber security issues. At the September 1998 NSTAC XXI meeting, the NSTAC approved the subgroup’s study paper along with the IIG report and made the following recommendation:

The President should direct the appropriate departments and agencies to continue working with the NSTAC to develop policies, procedures, techniques, and tools to facilitate industry/Government cooperation on cyber security.

To address the long-term issue, the IIG continued to investigate the NS/EP implications associated with the adoption of EC within industry and Government. The group focused its efforts on issues associated with the changing business and security processes and policies necessary to implement EC. The IIG’s conclusions and recommendations were included in its June 1999 report to NSTAC XXII. Based on that report, the NSTAC recommended that the President:

In accordance with responsibilities and existing mechanisms established by E.O. 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions, designate a focal point for examining the NS/EP issues related to widespread adoption of EC within the Government; and

Direct Federal departments and agencies, in cooperation with an established Federal focal point, to assess the effect of EC technologies on their NS/EP operations.

At the NSTAC XXI Executive Session, the U.S. Attorney General requested that the NSTAC and the DOJ work together to address cyber security and crime. The IES determined that the projects DOJ suggested should not be addressed by the NSTAC at large but agreed that the NSTAC could help facilitate a partnership between the DOJ and individual corporations.

This agreement resulted in a meeting on March 5, 1999, between the NSTAC chair and the Attorney General where they discussed the possibilities for industry and Government participation on mutually beneficial projects. These efforts ultimately resulted in DOJ’s Cyber Citizen program.

Building on past NSTAC efforts in addressing IA and CIP issues, the IIG continued to coordinate with Federal officials responsible for PDD-63 implementation during the NSTAC XXII cycle. Specifically, in accordance with the PDD-63 emphasis on public-private partnerships, IIG members focused on sharing the lessons and successes of NSTAC and offering it as a possible model for other infrastructures.

Actions Resulting from NSTAC Recommendations
NSTAC advice to the President and the Administration has had significant applicability to PDD-63 implementation. PDD-63 directs Federal
lead agencies to identify infrastructure sector coordinators within industry to provide perspective on CIP programs. At NSTAC XXI in September 1998, the NSTAC concluded that more than one entity or sector coordinator would be required to represent the diverse information and communications sector. In February 1999, following IES outreach to the Administration on the issue, the Department of Commerce acted in concert with NSTAC advice and selected three industry associations to serve as sector coordinators for the information and communications sector.

PDD-63 also calls for the private sector to explore the feasibility of establishing one or multiple ISAC. On the basis of the December 1997 NSTAC recommendation regarding a cross-infrastructure National Coordinating Mechanism, IES representatives engaged in a dialogue with senior Administration officials on the prospects of creating multiple infrastructure-based ISACs. That dialogue was important to the eventual decision to establish the National Coordinating Center for Telecommunications as an ISAC for telecommunications.

Finally, PDD-63 emphasizes the importance of relying on nonregulatory solutions to address infrastructure vulnerabilities. In satisfying this objective, the Administration underscored the value of promoting industry standards and best practices to improve IA. That approach is consistent with and follows on the December 1997 NSTAC XX recommendation regarding the creation of a private sector Information Systems Security Board.

Reports Issued

Information Sharing/Critical Infrastructure Protection

Investigation Group / Period of Activity

Information Sharing/Critical Infrastructure Protection Task Force (IS/CIPTF)
September 1999 – March 2002

National Plan to Defend Critical Infrastructures
Task Force (NPTF)
June 2001 – September 2001

Issue Background
In investigating Information Assurance issues, the NSTAC worked closely with the President’s Commission on Critical Infrastructure Protection and other Federal organizations concerned with examining physical and cyber threats to the Nation’s critical infrastructures. Federal efforts in this arena culminated with the release of presidential policy guidance—Presidential Decision Directive (PDD) 63, Critical Infrastructure Protection, May 22, 1998. Subsequently, PDD-63 implementation became a focal point for NSTAC activities.

Following a reevaluation of NSTAC subgroups in September 1999, the IES created the IS/CIPTF to address information sharing issues associated with critical infrastructure protection (CIP). Specifically, the IES directed the task force to, among other things, continue interaction with Government leaders responsible for PDD-63 implementation, and examine mechanisms and processes for protected, operational information sharing that would help achieve the goals of PDD-63.

At NSTAC XXIV, the National Coordinator for Security, Infrastructure Protection, and Counter-terrorism requested the NSTAC’s assistance in developing the Administration’s National Plan for Critical Infrastructure Protection. The NSTAC’s IES established the NPTF to draft a response to the National Coordinator’s request. Subsequently, NPTF leadership met with National Security Council and Critical Infrastructure Assurance Office (CIAO) staff to discuss approaches for providing input to the national plan. The chosen approach focused on providing input on capabilities for national information sharing, analysis, and dissemination to counter cyber threats.

History of NSTAC Actions and Recommendations
Building on outreach work conducted by the NSTAC Information Infrastructure Group during the NSTAC XXII cycle (see the Information Assurance section in this NSTAC Issue Review), the IS/CIPTF continued to provide input to the Director, CIAO, on the National Plan for Information Systems Protection (Version 1.0). This plan was the first major element of a more comprehensive effort by the Federal Government to protect and defend the Nation against cyber vulnerabilities and disruptions. The IS/CIPTF members shared industry concerns and developed a dialogue with the Government that helped to shape the plan. In its May 2000 report to NSTAC XXIII, the IS/CIPTF provided NSTAC-recommended input to the plan regarding the National Coordinating Center for Telecommunications (NCC) as the Information Sharing and Analysis Center (ISAC) for the telecommunications industry.

In parallel with its work associated with the National Plan for Information Systems Protection (Version 1.0), and as part of continuous efforts to share NSTAC expertise with industry and Government, the IS/CIPTF monitored the development of the Partnership for Critical Infrastructure Security. The Partnership is an industry/Government effort to raise awareness about critical infrastructure security and facilitates industry participation in the national process to address CIP. Through individual NSTAC member company participation, the NSTAC shared expertise, successes, lessons learned, and experiences to further facilitate the development of the Partnership in support of PDD-63 objectives.

The IS/CIPTF also examined mechanisms and processes for protected, operational information sharing that would help achieve the goals of PDD-63 and further the role of the NCC as an ISAC for telecommunications. (See the Industry/Government Information Sharing and Response section in this NSTAC Issue Review for a discussion of the Partnership’s efforts.)
how the NSTAC’s support for the evolving role of the NCC helped pave the way for the establishment of the NCC as an ISAC for telecommunications).

Specifically, the task force examined the NCC’s historical experiences to determine how and what information is shared and the utility of information sharing for industry and Government. As part of the study, the IS/CIPTF examined the NCC’s Year 2000 (Y2K) experiences for lessons learned that could benefit infrastructure protection efforts. The task force also identified benefits of information sharing to both industry and Government.

The IS/CIPTF also requested that the NSTAC’s Legislative and Regulatory Working Group (LRWG) examine the Freedom of Information Act (FOIA) as a potential impediment to information sharing and report its findings to the task force. The LRWG’s work provided the task force with the background necessary to voice industry concerns about the need for legal provisions to protect critical infrastructure protection-related information from disclosure.

The IS/CIPTF documented its findings in its report to NSTAC XIII in May 2000. The IS/CIPTF concluded that historical and Y2K experiences demonstrate information sharing to be a worthwhile effort; however, for widespread information sharing over an extended period of time to take place, legal, operational, and perceived impediments must be overcome. Based on the IS/CIPTF’s report, the NSTAC recommended that the President:

- Support legislation similar to the Y2K Information and Readiness Disclosure Act that would protect CIP information voluntarily shared with the appropriate departments and agencies from disclosure under FOIA and limit liability.

At the May 16, 2000, NSTAC XXIII Meeting, a Government request was made for industry advice and recommendations for revision of the National Plan for Information Systems Protection. During the NSTAC XXIV cycle, the IS/CIPTF developed a response based on the NSTAC’s experience with proven processes for industry and Government partnership at the technical, operational, and policy levels. Specifically, the task force documented NSTAC findings related to the three broad objectives of Version 1.0 of the national plan—Prepare and Prevent, Detect and Respond, and Build Strong Foundations—that should be reflected in Version 2.0 of the plan. In addition, the task force proposed that a new broad objective—International Considerations—be included in the plan’s Version 2.0. The NSTAC approved the response, and forwarded it to the President. This information was also shared with the Information and Communications (I&C) Sector Coordinators: the U.S. Telecom Association, the Telecommunications Industry Association, and the Information Technology Association of America; and the I&C Sector Liaison, NTIA. The information was subsequently included in the I&C Sector Report that NTIA forwarded it to the President in April 2001.

During the NSTAC XXIV cycle, the IS/CIPTF also continued to address barriers to sharing CIP-related information, including possible law enforcement restrictions on industry sharing network intrusion data with ISACs or similar information sharing forums. The task force requested that the NSTAC and Government Network Security and Information Exchanges (NSIE) assist in investigating this issue.

The NSTAC NSIE representatives reported that, historically, they had not discussed intrusions into their networks and systems with anyone else after reporting them to law enforcement because case agents had told them that doing so might compromise the investigation of their cases. In working with the Department of Justice, the NSIEs found that although common practice discourages victims of such crimes from sharing information, no laws or policies prohibit victims from discussing crimes against them even after they have reported them to law enforcement. To address the situation, the Chief, Computer Crime and Intellectual Property Section, Department of Justice, agreed to work with the law enforcement community to implement policies that encourage victims to share such information, and to educate victims on those policies. The NSIEs concluded that it would be necessary for the private sector to ensure that personnel
The President's National Security Telecommunications Advisory Committee

interacting with law enforcement on such cases are aware that they are permitted and encouraged to share this information for network security purposes using appropriate mechanisms.

At the June 6, 2001, NSTAC XXIV meeting, the National Coordinator requested the NSTAC’s assistance in developing the Bush Administration’s *National Plan for Critical Infrastructure Assurance*. At that meeting, Federal officials also briefed a new national initiative for information sharing and dissemination, the Cyber Warning Information Network (CWIN), to the NSTAC as part of the discussion on national information sharing capabilities. The IES formed the NPTF to discuss the proposed CWIN and develop further input to the national plan. The NPTF held discussions with members of the Government’s CWIN Working Group to gain a better understanding of the CWIN initiative. The NSTAC input to the national plan—based on the NPTF work—included an industry-based assessment of a national information sharing, analysis, and dissemination capability for addressing “cyber crises.” The assessment considered CWIN as a part of that larger national capability.

The NSTAC’s input focused on the need for a recognized, authoritative, national-level capability to disseminate warnings and facilitate response and mitigation efforts for cyber crises across the Nation’s infrastructures. The NSTAC also concluded that key elements of such a capability spanning public and private sectors should include information collection and sharing, information analysis, dissemination of alerts and warnings, and post-event analysis.

The NSTAC recognized that conceptualizing the architecture for a national capability for addressing cyber crises is a complex undertaking. Before a national capability can become fully operational, industry and Government must address—individually and in collaboration—numerous policy, legal, financial, operational, and technical issues. Nevertheless, the NSTAC clearly determined that the ISACs should be leveraged by both industry and Government in building such a national capability and should serve as the Government’s primary means of interface with industry. In addition, the NSTAC determined that industry and Government should develop communications mechanisms to link the ISACs to each other as well as with Government. The NSTAC also found that infrastructures should consider alternative means for communicating during emergencies as appropriate to the sector. For example, the telecommunications industry developed an alerting and coordination mechanism, which connects key elements of the sector and provides reliable and survivable communications in the event other communications mechanisms are unavailable or requirements warrant its use. The NSTAC forwarded its report containing input on the national plan to the President in November 2001.

Reports Issued

Intelligent Networks

Investigation Group / Period of Activity

Intelligent Networks (IN) Task Force
August 1989 – October 1991

Issue Background
The Telecommunications System Survivability Task Force selected IN as one of five study topics focused on determining the effect of new technologies on telecommunications systems survivability. In June 1989, the NSTAC charged the IES with continuing the intelligent network effort on an interim basis pending review by the IES PWG. Upon PWG recommendation that intelligent networks become a full task force, the IES established the IN Task Force in August 1989.

NSTAC XI extended the activities of the IN Task Force until NSTAC XII, December 13, 1990. To meet its charge, the task force worked with the OMNCS to derive a set of desired NS/EP user features and compared them with intelligent network services. The task force determined the advantages and disadvantages of identified intelligent network services for NS/EP telecommunications, including interoperability considerations. The IES extended the IN Task Force until NSTAC XIII to allow the OWG to work with the task force and the OMNCS to refine the recommendations in the task force final report.

The IN Task Force presented its final report and recommendations at the November 1990 IES meeting. The IES referred the report to the IES OWG for evaluation. The OWG’s New Technology Panel developed an executive report on INs in response to the IES charge to evaluate and refine the conclusions and recommendations of the IN Task Force Final Report. NSTAC XIII directed the IES to disband the IN Task Force. In its Executive Report to the President, NSTAC offered to provide additional support to assist the Government in meeting the challenges of intelligent networks.

History of NSTAC Actions and Recommendations

At NSTAC XIII, October 3, 1991, the NSTAC approved the following recommendation to the President in the IES Executive Report on Intelligent Networks:

- The Government should establish an IN Program Office to ensure advantages of evolving intelligent networks are incorporated into planning for and procurement of Government NS/EP telecommunications.

Actions Resulting from NSTAC Recommendations

The OMNCS established an Advanced Intelligent Networks (AIN) Program Office in its Office of Plans and Programs. The primary objectives of the AIN Program Office are to:

- Identify AIN service needs for NS/EP telecommunications;
- Determine the current status and planned capabilities of AIN technology;
- Demonstrate AIN capabilities supporting NS/EP requirements;
- Assess the status of AIN standards activities; and
- Develop and implement a strategy for influencing the direction of AIN standards.

The AIN Program Office awarded a 5-year AIN NS/EP contract to Bellcore to provide a mechanism for collecting IN and AIN data, analyzing new technology developments, and demonstrating AIN-based applications. By meeting those objectives and obtaining pertinent information from Bellcore, the OMNCS will help ensure NS/EP telecommunications users benefit from the evolving AIN technology.

Reports Issued

International Diplomatic Telecommunications

Investigation Group / Period of Activity

International Diplomatic Telecommunications (IDT)
Task Force
September 1983 – December 1984

Issue Background
National Security Decision Directive (NSDD) No. 97 stipulates that U.S. Government missions and posts overseas must have the required telecommunications facilities and services to satisfy the Nation’s needs during international emergencies. The National Communications System requested that the NSTAC advise the Department of State (DOS) on the vulnerability and risks inherent in overseas leased networks and offer remedial measures. On September 27, 1983, the NSTAC IES formed the IDT Task Force to study the issue and develop recommendations.

History of NSTAC Actions and Recommendations
In April 1984, the NSTAC forwarded the following recommendations on IDT to the President:

► Review vulnerabilities and risks at overseas diplomatic posts using the guidelines established by the IDT Task Force; and

► Establish a DOS point of contact to serve the telecommunications needs of foreign missions operating in the United States.

The NSTAC also instructed the IES to assist the DOS in determining the feasibility of using telecommunications resources owned by U.S. industries to support diplomatic requirements during international emergencies.

Reports Issued

Reports Issued
International National Security and Emergency Preparedness Telecommunications

Investigation Group / Period of Activity

Ad Hoc Group of the Industry Executive Subcommittee (IES) Plans Working Group (PWG)
July 1990 – March 1991

Issue Background
Effective worldwide communications directly influences the Nation's ability to promote its national security interests in the global arena and to meet its international responsibilities. Changes in the international environment will profoundly affect the telecommunications capabilities needed to support the U.S. NS/EP posture. Significant changes in the international telecommunications industry—Eastern European modernization, U.S. carrier involvement in other countries, and development of new technologies and international standards—will also affect the means for providing the requisite capabilities.

During the last few years, the industry/Government NS/EP telecommunications planning community demonstrated increasing interest in and concern about the international dimensions of NS/EP telecommunications. After considering a variety of potential problem areas, the ad hoc group concluded that although modern telecommunications technologies are increasingly capable of supporting NS/EP needs, inadequate planning for using such technologies might impede the President's ability to effectively react to international events.

The ad hoc group recommended to the October 24, 1990, PWG meeting that it form a task force to:

- Develop recommendations for an U.S. international NS/EP telecommunications plan of action using both Government and private sector telecommunications resources and capabilities to meet evolving U.S. international NS/EP telecommunications needs.

The PWG concluded that the ad hoc group needed to refocus the issue and directed it to review the international NS/EP telecommunications issue again with a sharper focus of the original charge. The ad hoc group met several times and presented a revised set of proposed task force charges at the March 6, 1991, PWG Meeting. The PWG concluded that an international task force was not warranted, but that the PWG Chair should send a letter to the Deputy Manager, NCS, advising of the ad hoc group's findings and gauging NSTAC's willingness to address the international issue if requested by the Government. The Deputy Manager, NCS, forwarded a copy of the PWG Chair's letter to NCS principals to convey the PWG's willingness to assist the Government in its effort to enhance overseas NS/EP communications.

Reports Issued

Last-Mile Bandwidth Availability

Investigation Group / Period of Activity

Last Mile Bandwidth Availability Task Force (LMBATF)
January 2001 – March 2002

Issue Background

At the 23rd meeting of the President’s NSTAC on May 16, 2000, the Deputy Secretary of Defense, and the Manager, NCS, addressed the inability of the Nation’s military and national security organizations to obtain the timely provisioning of high-bandwidth circuits at the local level, referred to as the “last mile.” Subsequently, in an October 2000 letter to the NSTAC Chair, the NCS Manager asked the NSTAC to recommend what the Government could do to expedite the provisioning of “last mile” bandwidth or mitigate the provisioning periods for such services.

After scoping the key issues in coordination with Government, the NSTAC’s IES formed the LMBATF at its January 18, 2001, Working Session. The task force was to examine the root causes of the provisioning periods, how the Government might work with industry to reduce provisioning times or otherwise mitigate their effects, and what policy-based solutions could be applied to the provisioning of high-bandwidth circuits for NS/EP services. The task force included broad representation of NSTAC member companies and NCS departments and agencies. During the remainder of the NSTAC XXIV cycle, the LMBATF gathered data from both industry organizations and the Federal Government regarding their experiences with provisioning at the local level. The task force also solicited input from telecommunications service providers on the processes for provisioning at the local level and the factors affecting provisioning periods. Based on the input, the LMBATF agreed that the scope of the study should apply to non-universally available services throughout the United States, including fiber optics, T1 and T3 lines, integrated services digital network and digital subscriber line technologies.

History of NSTAC Actions and Recommendations

The LMBATF concluded its analysis of the “last mile” provisioning during the NSTAC XXV cycle and presented its findings and recommendations in the March 2002 “Last Mile” Bandwidth Availability Task Force Report at NSTAC XXV. The task force found that the provisioning periods for high-bandwidth services in the “last mile” are affected by a combination of complex factors, such as intricate legislative, regulatory, and economic environments; challenging site locations; and contracting policies and procedures. Furthermore, while the Telecommunications Act of 1996 sought to encourage competition, many carriers, both incumbent and competitive, are dissatisfied with the results. This, combined with a high level of marketplace uncertainty, has reduced infrastructure investment by incumbents and competitors alike.

The task force also concluded that current Government contracting arrangements also create difficulties. In many instances, contracts are only vehicles for ordering services and do not represent a firm commitment on the part of the Government to purchase a service. Because such commitments are not in place, the carrier cannot be assured of recovering its infrastructure investment. Furthermore, when the business case warrants such investment, carriers are limited by contracts’ failure to list the sites to be served or the types and quantities of services to be provided. Problems also occur because Government contracts legally bind the prime contractor but make no explicit demands on subcontractors on which the prime contractor depends.

The Government is adversely affected by funding cycles that do not coincide with the time needed to obtain high-bandwidth services. Funding is not allocated until the user identifies an immediate need and obtains approval. However, the deployment of high-bandwidth infrastructure often requires years of planning and coordination for allocating capital, obtaining rights-of-way authority, and installing service facilities. The imperfect intersection of these inherently mismatched processes often results in lengthy provisioning periods.
The negative consequences of the funding process are often exacerbated by a fragmented management structure. In many cases, project managers are responsible for separate portions of the network, with no single entity responsible for planning or monitoring the provisioning of end-to-end service. Overall project management is vital to effective network deployment, systems integration, and achievement of project goals. Because telecommunications services are provided by a multitude of companies, users must track service orders and manage the network from a centralized perspective.

The task force also studied whether the TSP System can be used to expedite “last mile” provisioning requests because TSP provisioning assignments are used by the NS/EP community to facilitate the expedited installation of telecommunications circuits that otherwise could not be installed within the required time frame. Although TSP seems to be an applicable solution for many NS/EP “last mile” bandwidth requests, TSP provisioning assignments can only be applied to services originating from new business requirements. Therefore, TSP provisioning cannot be used to replace or transfer existing services, such as those associated with the contract transition. Finally, TSP cannot be used to make up for time lost because of inadequate planning or logistical difficulties. According to these parameters, many “last mile” provisioning requests are not eligible for the TSP System, even if the requested service could be used for executing an agency’s NS/EP mission. An alternative for meeting Government organizations’ service requirements may be the implementation of alternative technologies to fulfill bandwidth requirements on a temporary or permanent basis.

Based on this analysis, the LMBATF report recommended that the President, in accordance with responsibilities and existing mechanisms established by Executive Order (E.O.) 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions and other existing authority:

- Direct the appropriate departments and agencies, in coordination with industry, to reevaluate their communications service contracting and purchasing procedures and practices and take action to:
 - Provide sufficient authority and flexibility to meet their needs, consistent with current conditions
 - Allow long lead-time ordering and funding commitments based on projected requirements
 - Allow infrastructure funding where necessary for anticipated future needs or to accelerate installation so that customer requirements can be met
 - Share or assume risk for new service capital investment to ensure timely delivery
 - Allow and provide for performance incentives for all performing parties: industry and Government, organizational and individual
 - Require end-to-end project management of communications service ordering and delivery.

- Direct the Federal Government Chief Information Officers Council to propose, and assist in implementing, improved Government contracting practices for communications services that will enhance the availability of broadband services for the “last mile.”

In support of the recommendations, NSTAC “Last Mile” Task Force Report also suggested that both industry and Government encourage:

- Government contracting officers to engage all industry and Government representatives in joint planning sessions;
- Industry representatives to work with Government contracting officers in joint planning sessions;
Use of a contract structure that makes all carriers involved in the delivery of the service parties to the contract with direct accountability to the Government contracting entity; and

Contracting practices that require end users to identify requirements and to communicate future needs to network providers. End users and network providers should jointly identify complicating factors and discuss alternatives.

Finally, the NSTAC “Last Mile” Bandwidth Availability Task Force Report encouraged Government to:

- Establish realistic service requirements and timelines and select the service options that meet its needs with acceptable risk;

- Convene a working group consisting of industry and Government stakeholders in the provisioning process to develop and recommend a streamlined approach to all aspects of the process, including planning, ordering, and tracking. The resulting proposal should be comprehensive, simplifying steps and organizations as much as possible; should share information appropriately at all points; and should support flexibility in meeting end-user needs. The working group should give strong consideration to a single Government database to support the process and a single point of contact, such as a phone number or an e-mail address, to ensure accuracy of information and provide exception handling; and

- Establish or contract for project managers who have all necessary management control tools at their disposal; access to pertinent information; and experience, responsibility, and authority for obtaining and overseeing delivery of the end-to-end service.

The LMBATF concluded its activities upon NSTAC approval of its report.

Reports Issued

National Coordinating Center

Investigation Group / Period of Activity

National Coordinating Mechanism Task Force
December 1982 – November 1984

Telecommunications System Survivability Task Force
March 1986 – June 1989

National Coordinating Center for Telecommunications Vision Task Force
October 1996 – April 1997

Operations Support Group
April 1997 – September 1999

Information Sharing/Critical Infrastructure Protection Task Force
September 1999 – May 2000

National Coordinating Center Task Force
December 2004 – July 2007

Issue Background

Following the divestiture of the AT&T monopoly in 1982, the telecommunications industry and the Federal Government collectively developed the concept of a national coordinating mechanism (NCM) by which the public and private sectors could coordinate national security and emergency preparedness (NS/EP) telecommunications efforts. A year later, the President’s National Security Telecommunications Advisory Committee (NSTAC) recommended the creation of the National Coordinating Center (NCC) as the operational arm for the NCM. Consequently, in 1984, President Ronald Reagan called for the establishment of the NCC within the National Communications System (NCS) via Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Function.

Since that time, threats to the NS/EP telecommunications infrastructure have changed significantly, heightening the importance of daily coordination between industry and Government. In May 1998, President Bill Clinton released Presidential Decision Directive (PDD) 63, Protecting America’s Critical Infrastructures, a critical infrastructure protection (CIP) directive calling for, among other things, industry participation in the Government’s efforts to enhance the security of the Nation’s infrastructures. After studying the directive, the NSTAC recommended that the White House designate the NCC as the Telecommunications Information Sharing and Analysis Center (ISAC), since the NCC had already been performing similar functions in preparation for the Year 2000 rollover efforts.

The NCC played a key role in maintaining and reestablishing NS/EP communications during and after the terrorist attacks of September 11, 2001. In March 2003, the NCC became part of the Department of Homeland Security (DHS) as a result of the transfer of the NCS from the Department of Defense (DOD). Homeland Security Presidential Directive 7, Critical Infrastructure Identification, Prioritization, and Protection, issued in December 2003, succeeded PDD-63 and established a new national policy for Federal departments and agencies to identify and prioritize U.S. critical infrastructure and key resources and to protect them from terrorist attacks. As DHS continues evolving, the NCC must also periodically reconsider its structure, organization, and approach to keep pace with rapid legal and regulatory changes.

Currently, the NCC finds itself with three distinct missions:

- Serving the White House and NCS member departments and agencies through its NS/EP mission;
- Serving DHS through its CIP mission; and
- Fulfilling information sharing requirements through its information sharing and analysis function.

History of NSTAC Actions and Recommendations

The NSTAC recognized the need to establish a mechanism for coordinating industry and Government responses to the Government’s NS/EP telecommunications service requirements in the
post-divestiture environment. As a result, the NSTAC formed the NCM Task Force in December 1982, and charged it to identify and establish the most cost-effective mechanism to coordinate industry-wide responses to NS/EP telecommunications requests.

In the National Coordinating Mechanism Task Force Report, the NSTAC recommended the development of the NCC—the operational arm for the NCM approved by Government a year earlier to assist industry and Government in coordinating NS/EP telecommunications services in times of emergency. In 1984, the NSTAC followed this first report with its National Coordinating Mechanism Implementation Plan to assist the Government in determining how best to execute the coordinating mechanism.

Since that time, the NSTAC has periodically revisited the NCC both conceptually and operationally to evaluate its mission, information sharing procedures, and overall effectiveness as changes occur in the threat, policy, and technological environments facing the telecommunications industry. For instance, in 1987, the committee’s Telecommunications Systems Survivability Task Force reviewed Government actions taken on the NCM recommendations and determined that the recommendations were carried out effectively. Furthermore, the task force determined that NCS member organizations’ representation in the NCC should continue. In the NCC Intrusion Incident Reporting Criteria and Format Guidelines, the NCC Vision Task Force established standardized reporting criteria and outlined steps to improve NCC electronic intrusion report collection, processing, and distribution.

In 1997, the Operations Support Group (OSG) worked closely with the NCS member organizations and NCC industry representatives to develop a common framework for assessing the center’s ongoing role in NS/EP telecommunications. In its OSG Report, the NSTAC recommended that the President establish a mechanism within the Federal Government with which the NCC could coordinate on intrusion incident information issues, and with which NSTAC groups could coordinate the development of standardized reporting criteria. In 1999, the Information Sharing/CIP Task Force investigated potential recommendations to be made in support of the goals outlined in PDD-63. As a result, the NSTAC issued numerous recommendations to the President including the development of mechanisms and processes for conducting protected, operational information sharing; the designation of the NCC as the Telecommunications ISAC; the necessary continued interaction with Government leaders responsible for PDD-63 implementation; and the expansion of participation in the Telecommunications ISAC during subsequent phases to include a broader spectrum of information technology (IT) and communications industry companies. The Federal Government officially established the NCC as the Telecommunications ISAC in January 2000.

Following the October 21, 2004, NSTAC Principals’ conference call, the committee established the National Coordinating Center Task Force (NCCTF) to examine how best to balance both traditional network and cyber concerns and the changing national security environment to include homeland security concerns within the NCC moving forward. Specifically, the principals requested that the task force examine the future mission and role of the NCC, including:

- How should the industry members of the NCC continue to partner with Government?
- How should the NCC be structured relative to the dual missions of CIP and NS/EP?
- How does the new DHS Sector Coordinating Council (SCC) approach affect the NCC?

Throughout 2005 and early 2006, the NCCTF deliberated on numerous issues, focusing its discussions on the NCC’s organizational structure, information sharing and analysis, leadership, incident management and response, and international mutual aid. To gain additional insight into incident management and information sharing practices in particular, the task force co-hosted an all-day incident management subject matter expert meeting with the Next Generation Networks Task Force on August 30, 2005. The task force also internalized lessons learned from Hurricane Katrina response and recovery efforts, including those...
derived from the White House on improved industry and Government coordination in The Federal Response to Hurricane Katrina: Lessons Learned report.

Of particular interest and concern to the task force following Hurricane Katrina were questions related to the role of the NCC and the NCS in NS/EP telecommunications planning and incident response as entities within the new DHS and command and control issues associated with Emergency Support Function (ESF) #2—Communications support agencies. The task force determined that better delineation of roles and responsibilities, especially with regard to data reporting and the prioritization and escalation of requests, would improve incident response and establish clearer points of contact to address issues, reduce duplication of effort, and improve focus on fulfilling missions.

Based on the NCCTF’s analysis of issues facing the NCC, the NSTAC recommended that the President:

- Direct the Secretary of Homeland Security, the Director of the Office of Science and Technology Policy (OSTP), the Secretary of Defense, and other ESF #2 Federal support agencies to develop and implement policies and procedures with respect to: (1) managing and escalating requests from the NCC, and (2) the delineation of authorities and responsibilities when the Government invokes ESF #2.

- Direct the OSTP and the Homeland Security Council to join with the Communications SCC and the IT-SCC to support an industry-led task force with the primary goal of planning a regional communications and IT coordinating capability in the Gulf Coast and Southeastern regions prior to the 2006 hurricane season. Subsequently, the task force will determine the best approach for a long-term regional communications and IT coordinating capability that can serve all regions of the Nation. The task force should primarily consist of industry representatives, as well as Federal, State, and local government representatives.

- Direct the Secretary of Homeland Security to expand the NCC to include both communications and IT companies and organizations. The NCC would be a cross sector industry/Government facility with a round-the-clock watch, that would stand up to full strength during emergencies.

- Direct the Secretary of Homeland Security to engage the private sector in CIP activities by increasing the flow of threat information to the private sector, facilitating private sector participation in impact analyses, and clarifying policies for the protection of private sector information.

- Direct the Secretary of Homeland Security to improve the ESF #2 emergency response training and exercise program, with a focus on enhancing coordination among industry members and Federal, State, and local responders during incidents of national significance. This program should focus on sector interdependencies for both physical and cyber threats, and would aim to produce actionable results. Industry involvement must occur from the earliest planning stages.

- Encourage the Secretary of Homeland Security to improve the Federal Government’s cyber response strategy to delineate roles and responsibilities of Government and the private sector in the National Response Plan (NRP) [now the National Response Framework (NRF)], aligning communications and cyber operations centers, and enhancing relationships with international computer emergency readiness teams.

- Direct the Secretary of Homeland Security and other Government stakeholders to examine the value derived from the NCC collaboration and, if sufficiently supported, commit the resources necessary to strengthen and support the organization and its mission.

To further these recommendations, the NCCTF developed an action item roadmap to assist the NCC in its efforts to address new issues and challenges over the next five years.
In 2007, the NCCTF reviewed the recommendations from its 2006 report and developed a status report to provide an update on the implementation of the NCC Roadmap for the Future. Based on the NCCTF’s analysis of the progress-to-date against the NCC Roadmap for the Future, the task force provided the following observations to DHS on next steps:

- Continued success of the NCS process can be assured by updating the memoranda of agreement between the NCS member departments and agencies and providing expert detailees to the NCS and NCC.

- The NCS should formalize its relationships with DOD, including watch functions, by entering into memoranda of understanding and/or developing joint standard operating procedures for enhanced coordination in the future, including routine testing and the exercising of capabilities.

- Annual updates on the status of the NCC Roadmap to the NSTAC by the NCS Manager should ensure the NSTAC Principals remain engaged in the important partnership.

- A new membership structure reflecting the diversity of the expanding NCC membership implemented by the NCC Manager should enhance the level of trust amongst the membership.

- As the NCC Manager carefully monitors the level of information sharing in the NCC, it will ensure the organization remains a trusted environment.

- As the NCC evolves, industry and Government members should continually assess the NCC and its NS/EP mission while continuing to provide value to all partners involved.

Actions Resulting from NSTAC Recommendations

The NCS initiated numerous efforts to address the recommendations in the NSTAC Report to the President on the National Coordinating Center. Most significantly, the DHS Office of Cybersecurity and Communications established a “tiger team” to examine the consolidation of the NCC, the United States Computer Emergency Readiness Team, and the IT-ISAC, as the NSTAC recommended.

In addition, DHS addressed several of the NSTAC’s recommendations through the development of the NRF, which replaced the NRP, and the ESF #2 Annex. In particular, the NRF and ESF #2 Annex clarify the roles and responsibilities of the coordinating agency, primary agencies, and support agencies. The revised ESF #2 Annex also designates the Federal Emergency Communications Coordinator (FECC) to lead ESF #2 efforts when activated. The NCS is further revising the ESF #2 Operations Plan and job aids, and providing input into the joint field office standard operating procedure to provide additional clarity on FECC leadership of ESF #2. In addition, the NCC is working to increase the involvement of its industry members in training and exercise opportunities, such as the annual ESF #2 training and large-scale exercises (including Cyber Storm II, Top Officials [TOPOFF] IV, and the National Level Exercise [NLE] 02-08).

The 2007 ESF #2 Spring Training Conference in New Orleans, Louisiana, received extensive support from companies within the Communications ISAC. Industry representatives participated as liaisons, instructors, and demonstration hosts. Industry representatives also assisted NCS exercise planners to develop the exercise injects that defined ESF #2 involvement in TOPOFF IV, Cyber Storm II, and the NLE 02-08. During Spring 2008, the NCS focused its training efforts on developing a certification program for FECCs, who will lead ESF #2 response during an incident.

Reports Issued

NSTAC Report to the President on the National Coordinating Center, May 2006.

National Information Infrastructure

Investigation Group / Period of Activity

National Information Infrastructure (NII) Task Force
August 1993 – March 1997

Issue Background
At the August 2, 1993, IES meeting, the Plans Working Group (subsequently reestablished as the Issues Group) recommended that a task force be established to address NS/EP telecommunications issues related to the evolution of the U.S. information infrastructure. The IES established an NII Task Force to provide a series of reports with recommendations to the President. The task force’s charge was to:

- Identify, in collaboration with Government, potential dual-use applications of the NII and recommend Government actions;
- Identify potential NS/EP implications of the NII and recommend Government actions;
- As a minimum, address items identified by the Director, OSTP at NSTAC XV (for example, security, resiliency, interoperability, standards, and spectrum);
- Advise Government on technical and other considerations that will accelerate commercialization of a nationwide high speed network available to NS/EP users; and
- As a minimum, address architectural, policy, and regulatory issues, along with those research and development focus areas, pilot/demonstration projects, and civil/military telecommunications issues identified by OSTP and the National Economic Council.

The task force relied on The National Information Infrastructure: An Agenda for Action, released by the administration on September 15, 1993, as a guide for its work. This document called for the NSTAC to continue to offer advice to the President on NS/EP telecommunications issues, work with the Federal Communications Commission’s Network Reliability Council (subsequently renamed the Network Reliability and Interoperability Council) and complement the work of the U.S. Advisory Council on the NII. To better focus on its charge and coordinate with the Information Infrastructure Task Force and its committees, the NII Task Force established three subgroups: the Policy Subgroup, the Applications Subgroup, and the Future Commercial Systems and Architecture Subgroup.

The Policy Subgroup’s final report, Approach to Security and Privacy on the NII, summarized the findings of the subgroup in network security. It made preliminary recommendations on ways to ensure that expansion and enhancement of the information infrastructure would be compatible with telecommunications security concerns.

The Applications Subgroup assessed NII applications that the Government was developing. In doing so, the subgroup developed criteria to select applications for increased emphasis. The subgroup made a number of recommendations related to developing dual-use applications.

Additionally, the subgroup established an Emergency Health Care Information Focus Group to address health-care-specific issues for the NII. The subgroup chose this application area as a model for examining important information infrastructure application issues, such as interoperability, privacy, and security.

The final report of the Future Commercial Systems and Architecture Subgroup addressed the architectural principles and trends and NS/EP performance issues of the current and future NII. It examined the NII from the perspective of three major components: the public switched network, broadcast networks, and the Internet.

Additionally, the Issues Group addressed the information infrastructure issue, working with the OSTP to develop plans for an NII Symposium at the Naval War College (NWC), Newport, Rhode Island,
October 17 – 19, 1994. The Issues Group planned the symposium with the OSTP in response to an NWC invitation to the NSTAC to participate in a communications-focused game designed to address the NII. The NWC produced a non-attribution report for distribution to all participants, and it is available to any interested parties upon request.

History of NSTAC Actions and Recommendations

The task force presented its interim report at the NSTAC XVI Meeting on March 2, 1994. The report provides the background on the task force’s establishment, its activities and future direction, and a summary that includes a proposed statement for the NSTAC XVI Executive Report. The statement reiterates the task force’s commitment to assisting the President in ensuring it satisfies NS/EP requirements on the NII. The NSTAC approved both the report and the proposed statement for forwarding to the President.

The task force presented an NII Task Force Status Report at NSTAC XVII on January 12, 1995. The report discussed the work of the task force’s three subgroups—the Policy Subgroup, the Applications Subgroup, and the Future Commercial Systems and Architecture Subgroup. The status report also addressed the 12 recommendations culled from the individual subgroup reports.

The task force presented its third report to NSTAC XVIII on February 28, 1996. The report included analysis and recommendations regarding three NS/EP issues: 1) the need for an NII Security Center of Excellence (SCOE), 2) the emerging GII, and 3) Emergency Health Care Information. The NSTAC approved forwarding recommendations to the President regarding the latter two issues.

Following NSTAC XVIII, the IES charged the task force to further investigate the advisability of establishing a SCOE, henceforth referred to as the Information Systems Security Board (ISSB). The task force conceptualized the ISSB as a private sector entity that would promote information systems security principles and standards to improve the reliability and trustworthiness of information products and services. The task force developed the **ISSB Concept Paper**, which outlined the functions and processes of the ISSB and served as the centerpiece for an outreach effort undertaken to ascertain the viability of the ISSB model. After contacting more than 100 major information technology companies, industry associations, Government agencies, and major information technology users, the NII Task Force determined that there was broad support for the ISSB concept and that industry should take the lead in its formation.

The task force presented its fourth and final report at NSTAC XIX on March 18, 1997. The report focused on the ISSB initiative and the NS/EP implications of the GII. The NSTAC recommended the President endorse the private sector ISSB initiative. Lastly, the NSTAC approved a recommendation to sunset the NII Task Force.

Actions Resulting from NSTAC Recommendations

The Information Technology Industry Council (ITIC) sponsored an effort to explore formation of the ISSB; the ITIC hosted the first meeting of this group on January 21, 1997. Following the meeting, the Information Security Exploratory Committee (ISEC), a consortium of interested stakeholders, met regularly to discuss the possibility of operationalizing the ISSB concept. The ISEC issued its report in January 1998 in which it recommended that, although it supported the concept of the ISSB, studies revealed that establishment of such a board would be duplicative of private endeavors.

At the same time, however, the ISSB concept influenced the Clinton Administration’s policy on implementing Presidential Decision Directive 63, *Critical Infrastructure Protection*. Specifically, in an approach consistent with the NSTAC’s ISSB recommendation, the Administration’s Critical Infrastructure Assurance Office underscored the value of promoting industry standards and best practices to improve infrastructure assurance.
Reports Issued

National Research Council Report

Investigation Group / Period of Activity

National Research Council (NRC) Report Task Force
August 1989 – March 1990

Issue Background
In June 1989, the NSTAC noted that the NRC report, *Growing Vulnerability of the Public Switched Networks (PSN): Implications for National Security Emergency Preparedness*, differed from Telecommunications Systems Survivability Task Force findings. The NSTAC, therefore, charged the IES with examining those differences and reporting back in early 1990. In response, the IES formed the NRC Report Task Force and issued the following charges:

- If it agreed with the NRC report, address what actions should be taken by industry to assist the Government in implementing the NRC's recommendations;

- If it did not agree, give the reasons why and the factors bearing on the differing perspectives of the IES and the NRC; and

- Comment on the report's implications for interoperability.

The task force issued its final report in March 1990.

History of NSTAC Actions and Recommendations
In March 1990, the NSTAC approved the findings of the NRC Report Task Force. Contrary to the NRC's findings, the task force concluded the PSN was growing more survivable. This survivability stems from the increased network diversity provided by the existence of three major interexchange carriers, the increased user demand for network service availability, the deployment of robust network architectures, and the incorporation of advanced transmission, switching, and signaling technologies. The task force also noted that current technologies and competitive trends were enhancing network robustness.

Actions Resulting from NSTAC Recommendations
The NRC Report Task Force agreed with some of the recommendations of the NRC report and believed that the issue of growing vulnerabilities of the PSN needed to be further addressed. Therefore, the IES established the Network Security Task Force.

In 1991, the NRC report attracted considerable attention in Congress and at the FCC due to recurring outages of the PSN. The FCC established the Network Reliability Council on February 27, 1992, to make recommendations to the FCC on improving network reliability. The Network Reliability Council sponsored a symposium from June 10–11, 1993, in Washington, DC, on industry's best practices for avoiding and minimizing the risk and impact of future telephone network outages.

Reports Issued

National Telecommunications Management Structure

Investigation Group / Period of Activity

National Telecommunications Management Structure (NTMS) Task Force
August 1986 – June 1989

Issue Background
On May 22, 1986, the NSTAC concurred with the Government that there was a need for a survivable and endurable management structure to support NS/EP telecommunications requirements, and agreed that industry and Government should work jointly to develop such a capability. As a result, the NSTAC established the NTMS Task Force in August 1986 and charged it with assisting in developing an NTMS implementation plan.

History of NSTAC Actions and Recommendations
On November 6, 1987, the NSTAC forwarded to the President its recommendation to approve the NTMS Implementation Concept. The Executive Office of the President approved the concept on March 25, 1988. The NCS, opened the NTMS Program Office on June 17, 1988. During the week of July 12–15, 1988, the NCS conducted the NTMS trial exercise to determine the feasibility of the NTMS concept and funding requirements. The NCS successfully tested the National Telecommunications Coordinating Network concept September 27–29, 1988. The NCS completed the NTMS program plan in March 1989, and it is updated periodically. The NSTAC disbanded the NTMS Task Force on June 8, 1989.

Actions Resulting from NSTAC Recommendations
Through the NCC, industry provides advice and assistance in pursuit of NTMS operational capability.

The NCS established the COR NTMS Subcommittee to assist in achieving NTMS initial operational capability. The NTMS program became operational with the implementation of the northeast region in October 1990. In September 1991, the activation of the southwest and northwest regions provided additional capability. The subcommittee also completed NTMS regional validations in Chicago, Illinois, during November 1992; in Atlanta, Georgia, during February 1993; and in Denver, Colorado, during April 1993.

Reports Issued
NTMS Implementation Concept (Final), November 1987.
Network Convergence

Investigation Group / Period of Activity

Network Group
April 1997 – September 1999

Information Technology Progress Impact Task Force
September 1999 – June 2000

Convergence Task Force
June 2000 – June 2001

Network Security Vulnerability Assessments Task Force
June 2001 – March 2002

Next Generation Networks Task Force
May 2004 – May 2006

International Task Force
May 2006 – August 2007

Issue Background

For many years, global communications networks have functioned in a period of transition as customer demands and business imperatives catalyzed the convergence of traditional circuit switched networks with broadband packet-based Internet Protocol (IP) networks to create the telecommunications industry’s Next Generation Network (NGN). This evolving network infrastructure, which includes wireless, wireline, and IP technologies, will alter the way governments and private industry meet their national security and emergency preparedness (NS/EP) communications needs. In fact, the emergence of the NGN has already affected change in a profound way. Many network service providers now have the capability to carry voice, video, text, and data transparently to numerous categories of end-user devices, a key characteristic of the NGN. Mobile phones able to access an array of Web-based services represent only one example of this enhanced ability.

The scale, scope, and character of the NGN fundamentally changes the way Government and service providers must plan for, prioritize, and ultimately deliver NS/EP communications. NGN networks, which are largely packet-switched networks, differ greatly from legacy circuit-switched networks. For example, packet-switched environments place control capabilities at the network “edge” and rely heavily on intelligent devices to execute key functions. In this new environment, NS/EP and critical business communications will be subject to an increased number of cyber threats based on inherent vulnerabilities and interdependencies known or expected to exist in the NGN. With these changes, network operators, infrastructure custodians, and NS/EP users must determine how best to meet NS/EP user requirements on the NGN.

The transition to the NGN also presents challenges for ensuring the security and availability of NS/EP communications. In addition to the vulnerabilities that arise due to the packet-switched nature of the NGN, some vulnerabilities that already existed in legacy networks will persist or worsen in the NGN. For example, the enhanced interconnectedness of the NGN can be exploited by hackers to provide rapid and far-reaching propagation of malicious payload (attacks). Another vulnerability is the emulation of network control messages. Unlike legacy networks, which used separate paths to divide network control messages from normal network payload, NGN architectures have network control messages co-existing with normal payload traffic, providing more open access to hackers to interfere with these messages. These and other vulnerabilities create complex risk scenarios for NS/EP communications in an NGN environment, which also depends on other infrastructures such as the electric power industry. A further challenge is the global nature of the NGN; thus, methods for managing incidents of national significance may require international cooperation. To ensure NS/EP functions remain a priority in the transition to the NGN, these concerns must be addressed.

At the same time, the NGN offers significant improvements for the delivery of NS/EP communications capabilities as bandwidth and software continue to improve. New communications capabilities, including greater access to data and new services, will better support NS/EP functions in critical ways, enabling first responders, for example,
to obtain real-time access to voice, data, and video necessary for the most effective completion of their jobs. The NGN will also naturally increase network robustness and resiliency by the nature of its mesh architecture, offering many possible paths for service and redundancy of equipment and servers. To achieve the benefits of such new capabilities and greater resiliency, and to speed and enhance the transition to NGN, solutions must be found that address NS/EP functional requirements, especially for security and availability. Doing so requires forward-looking action by industry and Government.

The NGN interconnects with worldwide networks, which are themselves developing into a global, seamless infrastructure, to deliver communications services across national borders. This global interconnectivity brings with it inherent risks, as information passes over parts of the network that are more diverse in security, architecture, and management, particularly in some foreign network segments and infrastructures. These foreign network entities may be more vulnerable to intrusion, deliberate disruption, or accidental damage. The U.S. communications infrastructure is now dispersed across numerous companies and organizations and spans the telecommunications and information technology industries.

With the emergence of this converged global network, additional operational security concerns related to access and remediation during system disruptions are emerging, affecting the delivery of NS/EP communications. This convergence now prompts governments and critical infrastructure private-sector owners to reevaluate how NS/EP communications needs are being met today and in the future.

History of NSTAC Actions and Recommendations

The President’s National Security Telecommunications Advisory Committee (NSTAC) has an extensive history of examining the NS/EP implications of the transition of the Nation’s telecommunications networks to the NGN environment and providing the President with forward-looking and innovative recommendations. During the NSTAC 20 meeting in December 1997, concerns regarding the affects of new technologies on the availability of the Internet were discussed. In response, the NSTAC tasked the Network Group (NG) to further examine the issue. In its *Internet Report: Examination of the National Security and Emergency Preparedness Implications of Internet Technologies*, published in June 1999, the NSTAC examined three key transition factors—the extent to which NS/EP operations depend on the Internet, the network control element vulnerabilities associated with the Internet and their ability to cause a severe disruption of Internet service, and how Internet reliability, availability, and service priority issues applied to NS/EP operations.

Following NSTAC 22 in June 1999, the Industry Executive Subcommittee (IES) created the Information Technology Progress Impact Task Force (ITPITF) to examine the potential implications of IP network and public switched network (PSN) convergence on existing NS/EP services (such as the Government Emergency Telecommunications Service [GETS] and the Telecommunications Service Priority [TSP]) and to prepare for a Research and Development Exchange Workshop (RDX) focusing on network convergence issues.

The ITPITF analyzed issues related to GETS functionality in IP networks. The ITPITF determined that because IP networks do not have network intelligence features analogous to Signaling System 7 (SS7), IP networks may not support activation of GETS access and transport control and features. Furthermore, without quality of service (QoS) features to enable priority handling and transport of traffic in IP networks, GETS calls may encounter new blocking sources and be subject to poor completion rates during overload conditions. The ITPITF concluded that as the NGN evolves, telecommunications carriers’ SS7 networks will become less discrete and more dependent on IP technology and interfaces. Therefore, it will be necessary to consider the security, reliability, and availability of the NGN control space related to the provision and maintenance of NS/EP service capabilities.

In addition, the ITPITF analyzed potential implications of convergence on TSP services. The ITPITF concurred with the oversight committee that TSP services remained relevant in converged networks, as
TSP assignments could still be applied to identifiable segments of the PSN. However, because TSP applies only to circuit switched networks, a new program may be needed to support priority restoration and provisioning in end-to-end packet networks.

The ITPITF also examined evolving network technologies and capabilities that could support NS/EP functional requirements in both converged networks and the NGN. The ITPITF concluded that QoS and other new NGN capabilities would require some enhancement to best satisfy specific NS/EP requirements.

Based on the ITPITF’s May 2000 report to NSTAC 23, the NSTAC recommended that the President, in accordance with responsibilities and existing mechanisms established by Executive Order (E.O.) 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions, direct the appropriate departments and agencies, in coordination with industry, to:

- Promptly determine precise functional NS/EP requirements for convergence and the NGN; and
- Ensure that relevant NS/EP functional requirements are conveyed to standards bodies and service providers during NGN standards development and implementation.

Additionally, the ITPITF recommended that the NSTAC 24 work plan include an examination of the potential NS/EP implications related to possible security and reliability vulnerabilities of the control space in the NGN.

On September 28-29, 2000, the President’s NSTAC co-sponsored its fourth Research and Development Exchange (RDX) Workshop. The event was co-sponsored by the White House Office of Science and Technology Policy (OSTP) and conducted in conjunction with the Telecommunications and Information Security Workshop 2000 held at the University of Tulsa in Tulsa, Oklahoma. The purpose of the event was to exchange ideas among representatives from industry, Government, and academia on the challenges posed by network convergence. Discussions of convergence issues at the workshop and the RDX led to the following conclusions:

- A shortage exists of qualified information technology (IT) professionals, particularly those with expertise in information assurance and/or computer security;
- Developing a business case for security poses difficult challenges in the commercial sector, and a need exists to offset the high costs and high risks associated with R&D in security technology;
- Given the complexity and interdependence introduced to networks by convergence and the proliferation of network providers and vendors, best practices, standards, and protection profiles that help to ensure secure interoperable solutions must be evenly applied across the NGN; and
- R&D efforts should be enhanced to develop better testing and evaluation programs to reduce vulnerabilities introduced by malicious software.

From these conclusions, the participants at the RDX offered several recommendations for consideration by the Government and the NSTAC. These recommendations focus on improving network security in a converged and distributed environment. Specifically, the Government should:

- Establish and continue to fund Government programs to encourage increasing the number of graduate and undergraduate students pursuing study in computer security disciplines;
- Increase the funding and support to the National Security Agency and other Government agencies to facilitate the certification of additional Information Assurance (IA) Centers of Excellence to train and educate the next generation of information technology security professionals;
- Develop tax credits and other financial incentives to encourage industry to invest more capital in the research and development of security technologies;
Expand partnerships on critical infrastructure protection issues by encouraging more representatives from academia and State and local Governments to participate; and

Invest in R&D programs that encourage the development of best practices in NGN security, such as improved testing and evaluation, broadband protection profiles, and NGN security standards.

To support the Government, the NSTAC should:

Consider the issues of best practices and standards in its report to NSTAC 24;

Consider the evolving standards of due care legal issues discussed at the R&D Exchange, including linked or third-party liability and new privacy legislation and regulations such as the Insurance Portability and Accountability Act; and

Conduct another RDX in partnership with one or more of the IA Centers of Excellence to discuss the difficulties in and strategies for both increasing the number of qualified IT security professionals and enhancing the academic curricula to meet the security challenges of the NGN.

Beginning in September 2000, the Convergence Task Force (CTF) analyzed issues related to the potential security and reliability vulnerabilities of converged networks. Based on briefings received from industry and Government representatives, the CTF concluded that the public switched telephone network (PSTN) is becomingly increasingly vulnerable as a result of its convergence with packet networks. Of particular concern to the CTF was the interoperability of the intelligent network of the PSTN with IP networks via existing gateways. The CTF noted that malicious attacks on these gateways could impact overall network availability and reliability. Members suggested that possible remedies for these vulnerabilities include signaling firewalls implemented at network gateways and embedded security capabilities defined through standards. The CTF determined that additional analysis of these security vulnerabilities is required to gain further understanding of the possible consequences of the evolving NGN. Such an analysis should include examination of the convergence of wireless data networks with the PSTN.

Furthermore, it was agreed that the NGN must offer the NS/EP community quality of service, reliability, protection, and restoration features analogous to those of the PSTN. To achieve this, the CTF suggested that Government foster strong working relationships with NGN carriers and work to specify security requirements in packet network procurements in an effort to attain network reliability commensurate with that of the PSTN.

In response to concerns expressed by prominent Government officials, the CTF also examined issues of possible single points of failure in converged networks and associated possibilities of widespread network disruptions. Through examination of related past NSTAC reports and participation in a National Coordinating Center for Telecommunications (NCC) single point of failure exercise, the CTF members determined that a scenario could not be envisioned, even in the converged network environment, in which a single point of failure could cause widespread network disruption. Members found it more likely that any single points of failure would have only local or last-mile impacts. However, the CTF concluded that unforeseen points of failure precluded definitive assertions regarding the implausibility of a national level network failure.

The CTF also found that converged network vulnerabilities and possible points of failure could impact service availability and reliability essential to NS/EP operations rather than creating network component failures. Members suggested sharing detailed network data among industry, Government, and academia was needed to further understand converging networks and achieve more accurate network modeling and simulation techniques to analyze vulnerabilities and their impacts.

The CTF also examined the ongoing standards development efforts supporting NS/EP priority requirements in the converged network. Group
members concluded that, as the NGN evolves to offer more advanced broadband services, the Government must remain actively involved in the relevant standards bodies’ activities to help define and ensure the consideration of NS/EP requirements in the IP environment. The CTF further encouraged the Government to remain actively involved in working group activities related to NS/EP issues including the Internet Engineering Task Force and the International Telecommunications Union.

Based on the CTF’s June 2001 report to NSTAC 24, the NSTAC recommended that the President direct the appropriate departments and agencies, in coordination with industry, to:

- Specify network security, service level, and assurance requirements in contracts to help ensure reliability and availability of NS/EP communications during network convergence and in the developing NGN;

- Ensure that standards bodies consider NS/EP communications functional requirements during their work addressing network convergence issues, including security of PSTN-IP network SS7 control traffic and development of packet network priority services;

- Plan and participate in additional exercises examining possible vulnerabilities in the emerging public network (PN) and subsequent NS/EP implications on a national and international basis; and

- Utilize the Telecommunication Information Sharing and Analysis Center (ISAC) to facilitate the process of sharing network data and vulnerabilities to develop suitable mitigation strategies to reduce risks.

Additionally, the CTF recommended that the NSTAC 25 work plan include the following tasks:

- Examine the NS/EP security and reliability implications of the convergence of wireless data networks with the PSTN and traditional wireless networks;

- Support the efforts of the Government Subgroup on Convergence as requested by the Government in accordance with NSTAC’s charter; and

- Further examine converged network control space-related vulnerabilities, including those of signaling and media gateways, and analyze possible NS/EP implications.

Following NSTAC 24 in May 2001, the IES formed the Network Security/Vulnerability Assessments Task Force (NS/VATF) and charged the group to address public network policy and technical issues related to:

- Network disruptions, particularly distributed denial of service (DDOS) attacks;

- Security and vulnerability of the converged network control space, including wireless, network simulation and testing, standards, and consequence management issues; and

- Needed countermeasures, such as functional requirements, to address the issues above.

The NS/VATF noted that the September 11, 2001, terrorist attacks on the World Trade Center and the Pentagon renewed concerns regarding physical threats to the PN. While the telecommunications infrastructure had not been a direct target of terrorism, it could be in the future. Therefore, the NS/VATF concluded that Federal, State, and local government assistance related to preventing, mitigating, and responding to such an occurrence should be coordinated through the Telecommunication ISAC. In addition to the enduring physical threat to the Nation’s networks, the NS/VATF concluded that cyber attacks present a growing threat to the security of U.S. information systems and, consequently, to the critical communications of the NS/EP community. As cyber network attack techniques increase in sophistication and intruders continue using DDOS techniques to exploit vulnerabilities, cyber attacks will likely cause greater collateral impacts to NS/EP communications. Because of this threat environment, the NS/VATF concluded that industry and Government
should continue participating in ISACs to develop and implement unified and centralized capabilities to respond to attacks as they are occurring.

The NS/VATF also concluded that additional steps are necessary to enhance the security of the control space of the evolving PN. As network convergence continues, malicious attacks focusing on the network control space are increasingly feasible; therefore, industry and Government cooperation is necessary to address control space vulnerabilities and implement remedial tools. The NS/VATF also encouraged industry and Government support of the Network Security Information Exchanges’ (NSIE) efforts to develop a cross-industry security posture that could help provide a foundation for protecting the control space of the emerging PN.

The NS/VATF also expressed concern about security issues affecting NS/EP communications transiting wireless networks and technologies, including the security of the interoperation of wireless and wireline networks—and, more specifically, activities addressing the wireless access protocol.

The task force also concluded that Government should deploy wireless local area networks with higher levels of security and consider policies that would reduce the risks of using personal area network devices.

On the basis of its analysis, the NS/VATF stated that some of the best strategies for countering vulnerabilities of the critical telecommunications infrastructure involved:

- Increasing stakeholder awareness of cyber vulnerabilities and mitigation strategies, including strong cyber security and response plans.

The NS/VATF concluded that the PN and its services supporting NS/EP users would continue to be at risk from increasingly technologically sophisticated, well-coordinated threat sources. Therefore, industry and Government must continue to work together to devise countermeasures and strategies to help mitigate the impacts of physical and cyber attacks on the PN and other critical infrastructures.

Based on the NS/VATF’s March 2002 report to NSTAC 25, the NSTAC recommended that the President direct the appropriate departments and agencies, in coordination with industry, to:

- Coordinate and prioritize, through the Telecom-ISAC, Government assistance to industry to protect the Nation’s critical communications assets and to mitigate the effects of an attack as it is occurring;

- Encourage and adequately support the development and adoption of baseline standards and technologies including version 6, Internet Protocol Security, and the Emergency Telecommunications Service scheme, to help bolster core security and reliability of the NGN;

- Support the NSIEs’ efforts to develop a cross-industry security posture that could help provide a foundation for containing the control space of the emerging public network;

- Work with standards bodies to ensure consideration of NS/EP communications functional requirements while addressing the security of the interoperation of wireless and wireline networks, and more specifically, activities addressing wireless access protocol;

- Ensure that all wireless local area networks used by the Government meet the highest level of security standards available, with priority given to those supporting NS/EP missions; and
Develop policies and procedures to support the use of personal area network devices while reducing their risk of compromise.

Following the May 19, 2004, NSTAC meeting, the Principals created the Next Generation Networks Task Force (NGNTF) to conduct an examination of NS/EP requirements and emerging threats on the NGN. As an initial step, the NGNTF assembled a group of subject matter experts (SME) and Government stakeholders in August 2004 to determine how best to meet the task’s significant objectives. As a result of the meeting, the group identified five fundamental areas of examination: (1) NGN description; (2) NGN service scenarios and user requirements; (3) end-to-end services provisioning; (4) NGN threats and vulnerabilities; and (5) incident management on the NGN. In response to Government stakeholder questions during the meeting, the NGNTF agreed to undertake a report on the near-term actions that could be undertaken to reduce the impact of network transition issues on NS/EP communications and to identify areas where immediate Government involvement was needed to foster activities in areas such as NGN standards and systems development activities that may be proceeding without consideration of NS/EP needs.

Based on the near-term analysis conducted by the NGNTF, the Committee offered the following recommendations to the President in March 2005:

- Use existing and appropriate cross-Government coordination mechanisms to track and coordinate cross-agency NGN activities and investment;
- Explore the use of Government (civilian and Department of Defense [DOD]) networks as alternatives for critical NS/EP communications during times of national crisis;
- Use and test existing and leading-edge technologies and commercial capabilities to support NS/EP user requirements for security and availability;
- Support the development and use of identity management mechanisms, including strong authentication;
- Study and support industry efforts in areas that present the greatest NS/EP risks during the period of convergence, including gateways, control systems, and first responder communications systems;
- Review the value of satellite systems as a broad alternative transmission channel for NS/EP communications;
- Participate more broadly and actively in the NGN standards process in partnership with the private sector in the following areas: Web services, directory services, data security, network security/management, and control systems; and
- Focus on developing cohesive domestic and international NS/EP communications policy and conduct inter-governmental discussions on NS/EP communications.

The NGNTF then turned its attention to the longer-term taskings, leveraging significant involvement from industry and government SMEs involved in the day-to-day transition of the NGN and creating working groups to address each issue area. Ultimately, the NSTAC, based upon the work of the NGNTF, agreed upon nine recommendations, the implementation of which they believed would support the ability of the NGN to meet NS/EP functional requirements while also providing greater capabilities to NS/EP users.

The NSTAC Principals approved the following recommendations to the President in March 2006:

- **Identity Management.** Direct the Office of Management and Budget (OMB), the Department of Commerce (DOC), and the Department of Homeland Security (DHS) to work with the private sector in partnership to build a federated, interoperable, survivable, and effective identity management framework for the NGN that: (1) includes a common assurance taxonomy that
addresses NS/EP requirements and is usable in both the Government and commercial domains; (2) minimizes identity “silos” (identity stores containing usernames and passwords that is not or cannot be used by another applications), allows federation between the Government and commercial domains, and supports use of Government issued credentials for identification on the NGN; (3) meets other NS/EP requirements, including priority access to NS/EP communications services; (4) supports broad use of commercial technology, along with existing and emerging protocols and standards; and (5) includes explicit protections for privacy.

► Coordination on Common Operational Criteria for NGN NS/EP End-to-End Services. Direct OSTP, with support from the collective National Communications System (NCS) agencies, to establish a Common Operational Criteria development framework to meet NS/EP user requirements on the NGN. This would be a joint industry-Government initiative to ensure NS/EP communications capabilities in the NGN environment, and would include the creation of a regular NGN summit with annual reporting that would enable telecommunications/IT industry sector and Government stakeholders to: (1) develop and coordinate common NGN planning activities; (2) measure progress of NGN-related efforts; and (3) recommend and monitor programs that would foster NS/EP capabilities within the NGN, including initiatives concerning:

- A priority regime for both encrypted and unencrypted packets supported by a set of standards specifying how that priority is to be translated end-to-end among the different networks connected to the NGN, consistent with a user’s NS/EP authorization and required class of service; and

- NGN designs that respond to NS/EP requirements, including supporting a mixed protocol operational environment during the transition into IP version 6; peer-to-peer networks and systems for independence from centralized infrastructure; meshed networks for resiliency and deployability; and IP Security for authentication and confidentiality.

► Research and Development (R&D). In support of the prior recommendation, direct OSTP, with support from other relevant agencies, especially the Science and Technology Directorate of DHS, the National Institute of Standards and Technology (NIST), and DOD to establish and prioritize within the Federal Government initiatives that will foster collaborative and coordinated R&D supporting the Common Operational Criteria and accelerate demonstrations of critical NGN NS/EP-supporting capabilities or technologies among NGN telecommunications/IT and service providers.

► Technology Lifecycle Assurance and Trusted Technology. Direct OMB, OSTP, DOD, DHS, and DOC to drive comprehensive change in the security of NS/EP information and communications technology through policy, incentives, and research supporting the development and use of: (1) technology lifecycle assurance mechanisms; and (2) innovative trusted technologies that reduce the presence of intrinsic vulnerabilities.

► Resilient Alternate Communications. Direct OMB and DHS, in accordance with their respective authorities, to ensure that Federal agencies are developing, investing in, and maintaining resilient, alternate communications for the NGN environment. Specifically, DHS and OMB should require that NS/EP communicators, including incident managers and emergency responders, plan for communications resiliency especially by examining alternative or substitute access methods to the NGN to address specific threat scenarios, which methods can augment and possibly replace, at least temporarily, damaged or diminished access to the communications infrastructure.

► Agreements, Standards, Policy, and Regulations. Direct DHS, the Department of State, and DOC (including NIST and the National Telecommunications and Information Administration) to engage actively with and
coordinate among appropriate domestic and international entities to ensure that the relevant policy frameworks support NGN NS/EP capabilities. These policy frameworks are established through Agreements, Standards, Policies, and Regulations (ASPR). As part of the Common Operational Criteria development framework, these agencies should continuously monitor the entire lifecycle of ASPR associated with ensuring NS/EP capabilities to identify and act on opportunities to enhance ASPR, address their vulnerabilities, and eliminate potential impediments to providing NS/EP capabilities in a globally-distributed NGN environment.

▶ Incident Management on the NGN. Direct DHS to establish an inclusive and effective NGN incident response capability that includes a Joint Coordination Center, incorporating and modeled on the NCC, for all key sectors, but particularly both the Communications and IT Sectors, and supporting mechanisms such as a training academy and a collaboratively developed, broadly participatory, and regularly evaluated exercise program. This capability should be enhanced by an appropriate R&D program.

▶ International Policy. Direct departments and agencies to develop cohesive domestic and international NS/EP communications policy consistent with the recommendations in this report, in particular: (1) developing intergovernmental cooperative mechanisms to harmonize NS/EP policy regimes in participating countries consistent with the recommendations in this report; (2) establishing the rules of engagement for non-U.S. companies in NS/EP incident response in the U.S. and (3) addressing how information sharing and response mechanisms should operate in the international NGN environment.

▶ First Responders. Direct DHS and other appropriate Government agencies to assist first responders and public safety organizations in making the transition to the NGN, which will provide them with greater capabilities, but will also be a challenge to achieve given their limited resources and legacy systems.

As a result of international NS/EP communications concerns voiced at the NSTAC 29 meeting in connection with the NSTAC’s NGN study, the NSTAC established the International Task Force (ITF). The ITF examined international incident management and operational protocols, as well as the policy frameworks related to the use of NS/EP services over the global communications infrastructure. These policy and operational issue areas are particularly critical in light of expanding U.S. Government-initiated collaboration with key allies and global trading partners; the international nature of the network, provider, and threat environment surrounding cyber incidents; and increasing threat to and dependency on internationally significant infrastructure operated by various foreign entities.

The NSTAC’s resulting Report to the President on International Communications recommended that the President, in accordance with responsibilities and existing mechanisms established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions:

▶ Task DHS to coordinate international planning and development with the appropriate Federal Agencies for adoption of a global framework incorporating operational protocols and response strategies. The framework must accomplish the following:

- Address physical and cyber events that would disrupt the availability of critical global infrastructure services;
- Ensure private sector participation in developing the framework to leverage extensive expertise and existing relationships;
- Support the use of identity management solutions that address NS/EP requirements for normal operations and all-hazards crisis response; and
- Examine, with the help of private sector partners, existing U.S. laws and policies that could prevent service providers and other stakeholders from taking the necessary

The President’s National Security Telecommunications Advisory Committee 2008-2009 NSTAC Issue Review ▶ PREVIOUSLY ADDRESSED ISSUES

135
proactive measures to restore service and prevent harm to NS/EP users for government essential operations during a crisis.

In the interim, task Federal Agencies to expand relationships and response coordination using formal and reciprocal agreements with allied governments to include participation from selected international service providers and other stakeholders into existing joint U.S. Government and private-sector response and coordination processes and entities, such as the U.S. Computer Emergency Readiness Team and the NCC.

Actions Resulting from NSTAC Recommendations

Based on NSTAC recommendations, the NCS is actively participating in various standards bodies to ensure consideration of NS/EP functional requirements during convergence and in the NGN. The NCS is contributing to activities of the European Telecommunications Standards Institute’s Telecommunications and Internet Protocol Harmonization over Networks (ETSI TIPHON) group. ETSI TIPHON is examining several security issues related to convergence, including identification and authentication procedures for emergency calls, and issues related to cyber attacks and malicious intrusion into networks.

The NCS is also active in International Telecommunication Union (ITU) Standardization Sector efforts regarding recommendation E.106, Description of the International Emergency Preference Scheme (IEPS). IEPS recognizes the requirement for priority communications among Government, civil, and other essential users of public telecommunications services in crisis situations. IEPS, which is similar to GETS, would give authorized users priority access to and transport of NS/EP-related calls on an international basis within the PSTN and integrated services digital network infrastructures.

Citing findings of the ITPITF, on March 9, 2001, the National Coordinator for Security, Infrastructure Protection, and Counter-terrorism established, in conjunction with OSTP, an interagency Convergence subgroup under the Counter Terrorism and National Preparedness Information Infrastructure Protection Assurance Group. The purpose of this Convergence Working Group (CWG) was to address issues associated with the convergence of the voice and data networks and the implications of this convergence on NS/EP telecommunications services. The associated policy, legal, security, and technical issues were previously identified in a *Report of the CTF*, dated December 29, 2000. The CWG issued its final report on February 14, 2002.

In addition, the NCS currently has representation on several key standards organizations, including the Alliance for Telecommunications Industry Solutions, the Internet Engineering Task Force, the ITU, and the 3rd Generation Partnership Project, in support of standard solutions. The NCS Standards Branch continues to provide leadership to and be actively involved in supporting NS/EP priority service requirements in national and international standards organizations to influence the standards organizations to include standards enhancements that benefit the NS/EP community.

The NCS also continues to take every opportunity to test and prototype leading-edge technologies and commercial capabilities supporting NS/EP requirements, such as NS/EP scenarios prototyped in MultiService Forum (MSF) global interoperability events. The NCS continues to participate in the MSF meetings and coordinate with industry regarding NGN NS/EP priority services that can be prototyped and demonstrated in the international, multi-carrier environments of the MSF2008 Global Interoperability Event. The NCS plans to provide NGN broadband video priority services and other capabilities by prototype and a series of progressive demonstrations for different classes of traffic. The bandwidth prioritization concept is being considered as part of the NS/EP NGN broadband priority services, and a white paper together with a demo plan and proposed schedule is being prepared for funding considerations.

The NCS has initiated the development of the Next Generation Priority Services Experimental Testbed Environment to prototype and ensure that next generation emergency telecommunications services...
will operate end-to-end. In addition, the NCS is currently utilizing modeling, prototyping, and standards development to assist with an IP Multimedia Subsystem (IMS) Industry Requirement (IR) process that includes service providers, vendors, and standards bodies. The IMS IR process will support the definition of NS/EP requirements for the NGN. Furthermore, the NCS initiated the IMS (NGN Architecture) Industry Review to develop requirements for next generation priority services in support of the NS/EP mission. The 2007 NS/EP IP IMS Core Network IR for NGN GETS, Phase 1, Voice Service was issued December 21, 2007. A two-day NS/EP IMS Access Network IR kickoff meeting was held with industry March 4–5, 2008, and addressed the NCS's plan to work with the industry to develop industry requirements for NS/EP priority voice and broadband services for seven different access technologies.

The NCS Committee of Principals formed the International Communications Working Group (ICWG) to examine issues raised by and relating to the NSTAC Report to the President on International Communications, and to work in concert with the private sector to assess how to implement NSTAC recommendations. The ICWG performed a gaps analysis of the international communications efforts underway and identify existing joint-examination mechanisms currently in place for responding to all-hazard attacks. The ICWG also met with key industry representatives from the NSTAC ITF to clarify the intent of the report’s recommendations. The ICWG delivered the International Communications Working Group Response to the National Communications System Committee of Principals in March 2009.

Reports Issued

Network Security

Investigation Group / Period of Activity

Network Security Task Force
February 1990 – August 1992

Network Security Information Exchanges
June 2001 – Present

Network Security Standards Oversight Group

Network Security Steering Committee
August 1992 – December 1994

Network Security Group
December 1994 – April 1997

Network Group
April 1997 – September 1999

Embedded Interoperable Security Issue Scoping Group
June 1999 – November 1999

Protecting Systems Task Force
September 1999 – May 2000

Internet Security/Architecture Task Force
April 2002 – April 2003

Operations, Administration, Maintenance, and Provisioning
Standard Working Group
February 2003 – August 2003

Network Security Scoping Group
September 2007 – May 2008

Issue Background
The interest in and concern about network and ecosystem security is increasing in the national security and emergency preparedness (NS/EP) communications, intelligence, and defense communities, as well as in agencies across the Federal Government. Technological advances brought upon by the convergence of wireless, wireline, and Internet Protocol networks, as well as increasing threats from more sophisticated adversaries, are shifting the way the Government will need to respond to ensure NS/EP communications services, priority, and reconstitution.

The United States’ information and communications technology (ICT) infrastructure is increasingly targeted for exploitation and potentially for disruption or destruction by a growing number of state and non-state adversaries. As cyber attacks and exploitation activity against U.S. networks have increased significantly and become more targeted and serious, the need to address the security of U.S. networks is critical. Additionally, there is a necessity to provide a complementary, coordinated approach to critical infrastructure and key resources protection.

History of NSTAC Actions and Recommendations
Network security issues lie at the core of the President’s National Security Telecommunications Advisory Committee’s (NSTAC) work on behalf of the President. The NSTAC initiated an in-depth review of network security issues in February 1990 when the committee’s Industry Executive Subcommittee (IES) established the Network Security Task Force (NSTF) to address the National Security Council’s concern about the vulnerability of the Nation’s telecommunications networks to intentional software disruptions or manipulations that could threaten NS/EP communications. Having completed its original task, the IES reestablished the NSTF at the December 1990 NSTAC meeting and charged it to work closely with, and in support of, the Government Network Security Subgroup (GNSS).

On July 17, 1992, the NSTAC approved the Network Security Task Force Final Report. The report recommended that the President:

▶ Publicly support the NSTAC network security initiative; and
▶ Establish a Government focal point for coordination on network security standards.
The NSTAC also endorsed both the Network Security Standards Oversight Group (NSSOG) and a strong network security information exchange among industry companies. The NSTAC formed its Network Security Information Exchange (NSIE) in 1991, paralleling the GNSS’ creation of a Government NSIE. The joint meetings of the NSTAC and Government NSIEs remain a unique industry-Government forum where representatives exchange information on network threats and vulnerabilities in a trusted, nondisclosure environment.

The IES established the NSSOG and the Network Security Steering Committee (NSSC) in response to NSTAC 14 charges to continue network security activities. The IES established the NSSC as a permanent IES working group with oversight responsibility for network security activities.

On May 27, 1993, the NSSC recommended that the President:

- Correct the legislative deficiencies affecting the capability to gather evidence about computer crimes and to prosecute and convict criminals who target computers that support the national telecommunications infrastructure.

In February 1994, the Government and NSTAC NSIEs sponsored a Network Security Symposium. These groups designed the symposium to inform attendees of the potential threats to and vulnerabilities of the public switched network (PSN) from computer intruders. Subject matter experts from industry, Government, and law enforcement presented information.

At the March 2, 1994, NSTAC 16 meeting, the NSSC updated its assessment of the risk to the PSN and announced its plans to strengthen the NSTAC NSIE and expand its membership.

On June 28, 1994, the Government and NSTAC NSIEs sponsored a Network Firewalls Workshop. The workshop provided an overview of firewall technologies, addressed strategies for mitigating vulnerabilities, discussed firewall uses and applications, and reviewed case histories.

In October 1994, the NSSOG released a technical report focusing on network security standards issues for the PSN. In its report, the NSSOG categorized 12 recommendations on policy, procedural, and technical issues important to promoting interoperability, mitigating current or future threat scenarios, implementing realistic solutions, and/or addressing a range of technologies or architectures.

At the January 12, 1995, NSTAC 17 meeting, the NSTAC approved the NSSOG report and recommended that the President:

- Task the National Institute of Standards and Technology (NIST) and other Government organizations to support industry in the development of standards recommended in the NSSOG report.

At the February 28, 1996, NSTAC 18 meeting, the NSTAC approved the Network Security Group’s (NSG) findings with respect to determining NSTAC’s potential contributions to developing a middle-ground security technology solution. The NSTAC also presented the findings of a report titled *An Assessment of the Risk to the Security of Public Networks*, which was co-authored by the Government and NSTAC NSIEs.

On September 11, 1996, the Government and NSTAC NSIEs sponsored a symposium on securing data networks. This event continued successful efforts by the NSIEs to share lessons learned about network security with a broader audience through workshops and analytical reports.

Also in September 1996, the NSG sponsored the Network Security Research and Development (R&D) Exchange. The event’s purpose was to analyze R&D activities ongoing in both the public and private sectors and to address issues of authentication, intrusion detection, and access control from the capabilities management perspective. In November 1996, the NSG organized the Forward-Looking Analysis Panel to consider the impact of the *Telecommunications Act of 1996* on network security and NS/EP telecommunications services. The panel addressed issues such as carrier interconnection,
collocation, and open network architecture. The Federal Communications Commission’s (FCC) Network Reliability and Interoperability Council (NRIC) considered the panel’s input and subsequently included it in an NRIC report.

At the March 18, 1997, NSTAC 19 meeting, the NSG reported on its work to address the impact of the changing regulatory and technological environment on NS/EP telecommunications services. The NSG also reviewed its recent activities in the areas of R&D, intrusion detection, and forward-looking network control security analysis. At the meeting, the NSG outlined the efforts of the newly established Intrusion Detection Subgroup (IDSG) and its charge to explore a more cooperative approach to developing enhanced intrusion detection tools. The NSG concluded by addressing the activities of the NSIEs and noted that the NSTAC NSIE expanded from nine to 20 members.

Following NSTAC 19, the Network Group’s (NG) IDSG assessed network intrusion detection R&D activities to determine whether NS/EP considerations required additional efforts. Working with industry groups, the Defense Advanced Research Projects Agency (DARPA) and other Government groups, the IDSG identified the current state of intrusion detection research. The IDSG subsequently provided a report to NSTAC 20 in December 1997 detailing its findings and recommendations for the President to consider in promoting the R&D of intrusion detection technologies. The NSTAC accepted and approved the report and recommended that the President:

- Promulgate a national technology policy to address intrusion detection;
- Establish an interagency working group for intrusion detection;
- Increase R&D funding for intrusion detection for network control systems vital to continued operation of critical infrastructures; and
- Encourage cooperative development programs.

The NG established another subgroup following NSTAC 19 to respond to a request by Dr. John Gibbons, then Assistant to the President for Science and Technology. Dr. Gibbons asked the NSTAC to determine the likelihood of a widespread telecommunications outage, identify industry plans in place for intercarrier coordination to respond to such an outage, and describe how telecommunications service providers and the Government would cooperate to assure the President that restoration priorities would meet the national interest. The NG established the Widespread Outage Subgroup (WOS) to focus on these issues and provided a report by NSTAC 20 reflecting its findings. The WOS determined that, given the limited precedent for telecommunications outages of such magnitude, there was a low probability of a widespread, sustained outage of public telecommunications service. In December 1997, the NSTAC approved the WOS report and recommended that the President:

- Direct the appropriate Federal departments and/or agencies to work with industry to improve intercarrier coordination plans and procedures;
- Encourage the FCC to maintain a Defense Commissioner at all times to help industry and Government overcome legal and regulatory impediments to a rapid and orderly restoration of service during a widespread telecommunications outage;
- Task the appropriate Federal departments and agencies to work with industry to advance the state-of-the-art for software integrity; and
- Direct the expansion of Government R&D efforts to address the most significant vulnerabilities of new and evolving telecommunications technologies and services.

Following NSTAC 20, the NG examined the readiness of the telecommunications industry to ensure continuity of service through the millennium change, focusing on NS/EP and the national telecommunications infrastructure. The NG surveyed telecommunications service providers, equipment vendors, system integrators, industry forums
addressing the Year 2000 (Y2K) problem, and vendors providing Y2K solutions. The NG concluded that significant efforts were underway in both industry and Government to eradicate the Y2K problem within the Nation’s telecommunications infrastructure. However, given the extent and complexity of the Y2K software augmentation, no guarantees existed that Y2K measures would anticipate, and/or prevent, every problem. In September 1998, the NSTAC approved the *Year 2000 Problem Status Report* and recommended that the President:

- Direct appropriate departments and agencies to develop contingency plans to:
 - Respond to Y2K-induced service impairments of the Government’s NS/EP customer premises equipment (CPE), functions, and applications
 - Fulfill mission-critical NS/EP responsibilities in the event of Y2K induced public network (PN) service impairments
- Direct his Y2K focal point to ensure the coordination of the Government’s requests for Y2K readiness information from the telecommunications industry

Following NSTAC 21, the NG continued the tasking from the NSTAC 20 meeting to examine how NS/EP operations might be affected by a severe disruption of Internet service. In conjunction with the gap analysis effort by the Office of the Manager, National Communications System (OMNCS), NG members provided their individual perspectives in the *PN Alternatives Analysis Report* developed by the OMNCS. During this cycle, the NG continued to oversee the NSTAC NSIE and worked toward facilitating the exchange of network security R&D information between industry and Government.

The R&D effort subsequently resulted in an NG-sponsored R&D Exchange in October 1998, held in collaboration with activities sponsored by Purdue University’s Computer Operations, Audit, and Security Technology (COAST) Laboratory and the Institute of Electrical and Electronics Engineers (IEEE). The exchange focused on two themes. The first theme examined how industry and Government can better collaborate on R&D. The second examined the growing convergence of telecommunications and the Internet. The attendees overwhelmingly agreed on the need to identify potential centers of excellence in industry, Government, and academia and provide them with appropriate long-term funding to promote the development of computer and network security professionals, disciplines, and programs. Equally important was the need to establish large-scale testbeds to promote joint research, develop and verify metrics and evaluate security products, and address other technical needs in network security and information assurance.

The Government and NSTAC NSIEs completed an after-action report on the workshop, *The Insider Threat to Information Systems: A Framework for Understanding and Managing the Insider Threat in Today’s Business Environment*. In addition, the NSIEs completed their *1999 Assessment of the Risk to the Security of the Public Network*. The NSIEs concluded that the 1995 findings regarding the overall vulnerabilities of the PN were still valid. Old vulnerabilities were still being exploited even though fixes were readily available. Vulnerabilities in many of the PN’s diverse technologies (including Signaling System 7 [SS7], Intelligent Networks [IN], Asynchronous Transfer Mode [ATM], and Synchronous Optical Network [SONET]) remained unaddressed. The interconnectivity among technologies and networks had not merely persisted, but had become even greater than it was in 1995. Between 1995 and 1999, three major factors exacerbated the overall vulnerability of the PN: the *Telecommunications Act of 1996*, changing business practices, and the Y2K problem.

In June 1999, the NG completed its work on the *Internet Report: An Examination of NS/EP Implications of Internet Technologies*. The report addressed the following three objectives: 1) examine the extent to which NS/EP operations will depend on the Internet over the next 3 years; 2) identify vulnerabilities of network control elements associated with the Internet and their ability to cause a severe disruption of Internet service, applying lessons learned from NSTAC’s similar
studies of the PSN; and 3) examine how Internet reliability, availability, and service priority issues apply to NS/EP operations.

The NG concluded that the NS/EP community’s direct dependence on the Internet for mission critical operations was modest. Departments and agencies with NS/EP responsibilities were using the Internet mostly for outreach, information sharing, and electronic mail. The NS/EP community was more inclined to depend on dedicated Transmission Control Protocol/Internet Protocol (TCP/IP) intranets for mission-critical NS/EP operations at this time, because of significant security and reliability concerns associated with the Internet. In June 1999, the NSTAC approved the report and the following recommendations:

Recommend that the President, in accordance with responsibilities and existing mechanisms established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions, direct the establishment of a permanent program to address NS/EP issues related to the Internet. The program should:

- Work with the NS/EP community to increase understanding of evolving Internet dependencies;
- Work with key Internet organizations and standards bodies to increase awareness of NS/EP requirements;
- Interact with the appropriate Internet organizations and initiatives to investigate, develop, and employ NS/EP-specific Internet priority services, such as end-to-end priority routing and transport; and
- Examine the potential impact of Internet Protocol (IP) network-PSN convergence on PSN-specific priority services.

In addition, the NSTAC directed the IES to examine the potential impact of IP network-PSN convergence on PSN-specific NS/EP priority services (including Government Emergency Telecommunications Service [GETS] and Telecommunications Service Priority [TSP]).

Following the NSTAC 25 meeting on March 13, 2002, the NSTAC again focused on network and Internet security issues. At the meeting, the Special Advisor to the President for Cyberspace Security discussed the serious threats posed by vulnerabilities within the domain name servers and the border gateway protocol. In response to these concerns, the NSTAC created the Internet Security/Architecture Task Force (ISATF) to develop recommendations to the President on how to identify and remediate vulnerabilities in pervasive software/protocols, define the “edge” elements of the Internet, and determine ways that the NSTAC could integrate its efforts to define and monitor significant critical infrastructures supporting the Internet with other industry activities.

In the First Steps in Identifying and Remediating Vulnerabilities in Pervasive Software/Protocols Report, the ISATF analyzed five stages relevant to identifying and remediating vulnerabilities in pervasive software and protocols: prevention, detection, information sharing, analysis, and correction. In the area of prevention, the task force advocated aggressive public-private research and development activities and cited the need to develop adequate alert and warning systems to support the operations of information sharing and analysis centers. The task force also identified barriers to the effective detection of vulnerabilities, such as the myriad number of forums devoted to detection and the lack of standardization in reporting procedures. Next, the task force emphasized that significant barriers to information sharing exist, such as the Freedom of Information Act (FOIA) and liability concerns, and advocated the creation of legislation that would ease the sharing of critical information. The ISATF also concluded that the analysis functions within industry that detect and publish vulnerabilities...
appear to be adequate, but the Government may find some benefit in better leveraging available synergies by consolidating Government-funded analysis centers where appropriate. Finally, the task force observed that while many organizations are successfully correcting and remediating vulnerabilities, they fail to utilize a streamlined method for expeditiously disseminating corrected information to the telecommunications and Internet service provider (ISP) communities.

Based on the findings of the ISATF report, the NSTAC recommended that the President direct the appropriate departments and agencies, in coordination with industry, to:

► Consolidate Government-funded watch center operations of agencies and departments dedicated to the detection and dissemination of information related to Internet vulnerabilities into one organization to create a more efficient and effective collaborative industry/Government information-sharing partnership;

► Establish a lead organization within the Department of Homeland Security (DHS) to coordinate with industry a process for warning, notification, coordination, and remediation of widespread problems in a national emergency;

► Recognize the need to involve all aspects of the Internet in the process of identifying significant vulnerabilities, including the web hosting, network access provider, backbone, and ISP communities;

► Fund efforts related to identifying and mitigating vulnerabilities in the most critical protocols or software that key sectors of the Nation’s infrastructure rely upon; and

► Promote and support legislation to address FOIA, antitrust, and liability concerns regarding information shared by industry for the purposes of critical infrastructure protection.

Additionally, the ISATF made other recommendations focused on developing a process for the Internet community, both private and public, to share information within its component communities, and within the larger telecommunications and Internet infrastructure context.

At the NSTAC 25 meeting, participants also expressed concern over the ability to defend the Internet by protecting the edges of the Internet against attack or exploitation. In response to these concerns, the IES tasked the ISATF to provide guidance on how to define the edge of the Internet.

Through detailed analysis, the ISATF determined that because the Internet is not a single network but a network of interconnected networks, there is no single definition of the edge, as the definition depends on perspective. The ISATF also noted that there are many different ways to define the edge that include, but are not limited to the following: all systems that contain Internet Protocol (IP) addresses that do not route IP packets; the composition of information systems; and zones of responsibility for network operators versus end-users. In addition, the group noted that emphasis should focus not on defining the edge of the Internet but on defending the Internet, because the adoption of a single definition of the edge could prevent critical security precautions from being addressed in other areas.

Based on the ISATF’s analysis, the NSTAC recommended to the President that:

► The Government should continue its work to identify the critical national security and emergency preparedness missions and functions supporting those missions that rely on the Internet and encourage the parties responsible for those missions to ensure that they are adequately protected through redundancy and alternative capabilities;

► Industry, standards bodies, software vendors, equipment vendors, network operators, and end-users of all products and services that make up the Internet should ensure that these products...
have built-in baseline security features and that these capabilities are appropriately configured and kept current; and

- The Government should work with Internet security experts and standards bodies to develop a standard set of key warnings and indicators that all service providers can use as a baseline to measure security threats.

The NSTAC’s Operations, Administration, Maintenance, and Provisioning (OAM&P) Standard Working Group recognized that Executive Orders, presidential directives, and presidential commissions have specified infrastructures as national assets that are critical to the defense and economic security of the United States. Telecommunications is one of these critical infrastructures. Security for the network management functions controlling this infrastructure is essential. Many standards for network management security exist; however, compliance is low and implementation is inconsistent across the various telecommunications equipment and software providers. In addition, service providers are specifying contradicting requirements for products, which results in inconsistent vendor feature sets and potentially higher costs for vendors. Finally, as the telecommunications industry transitions to a converged network environment, new security challenges emerge; and threats in the public network become threats in the management and control planes.

The OAM&P Standard Working Group reviewed the Alliance for Telecommunications Industry Solutions (ATIS) standard T1.276-2003 and concluded that the current standard addresses only one aspect (such as the management plane) of an overall end-to-end security solution. T1.276-2003 addresses security for network element, management system, and element management system equipment only; it does not specifically address security for other equipment, such as customer premises equipment. Apart from the T1.276-2003 requirements, the current standard assumes that effective hardware and software controls provided by the operating system protect the data and resources being managed.

In addition, the OAM&P Standard Working Group recommended to the President that:

- The National Institute of Standards and Technology (NIST) review the T1.276-2003 standard. If a review finds a conflict between the T1.276-2003 standard and existing Federal Information Processing Standards and NIST publications, NIST should make these conflicts known to the appropriate standards bodies;

- Federal departments and agencies be encouraged to use the T1.276-2003 standard in requests for proposals, as appropriate; and

- Through the DHS, encourage officials responsible for other infrastructures to consider the elements of the T1.276-2003 standard as a baseline for security requirements and adapt appropriate requirements for their respective infrastructure.

The NSTAC principals emphasized the importance of reevaluating network security issues at the 2007 NSTAC meeting. Specifically, members highlighted the complexity of global network security, noting that the increasingly global, interdependent, and converged network environment has resulted in new challenges and threats for NS/EP communications.

The NSTAC established its Network Security Scoping Group (NSSG) at the September 20, 2007, NSTAC IES working session to scope future NSTAC work in the area of network security. The NSSG performed two primary analytical exercises as part of its investigation: (1) a study of current and previous NSTAC, Federal Government, and standards-making bodies’ activities in the area network security; and (2) a comprehensive listing of network security issues of concern to the NSTAC in the form of a Terms of Reference document. The NSSG collaborated with the Executive Office of the President (EOP) to leverage its guidance and expertise in order to identify specific issue areas of immediate concern for further investigation.
In accordance with the National Security Presidential Directive 51/Homeland Security Presidential Directive 20, National Continuity Policy, the NSSG coordinated with the EOP to focus on specific areas of the national ICT framework that support critical Government functions. These functions are primarily responsible for ensuring that national security protection resources are maintained during a catastrophic emergency. The NSSG identified three main areas of immediate concern in the area of network security:

- **“Core Network Security”** issues pertain to the potential strengths and weaknesses of the core network. The Nation's communications core networks are a collection of multiple service providers' networks that provide a high level of redundancy and availability of service due to interoperability and service agreements. Congestion is a key issue for moving traffic in the core. Congestion can be caused by failures of network segments, which pushes additional traffic onto other routes, as well as by malicious data flooding on network segments, commonly called denial of service or botnet attacks. Concerns about the operation of the core network revolve around ensuring service availability, accurate delivery of content, and security of information being delivered.

- **“End-to-End Network Defense”** relates to meeting NS/EP requirements and undertaking network defense in the extremely complex next generation networks (NGN) ecosystem where endpoints, users, applications/services, and networks are neither homogenous nor managed by a single entity. While the NGN environment enables a variety of users and devices to more conveniently access the network, it also presents more sources of vulnerability. In this diverse landscape, stronger mechanisms for ensuring trust and network management is needed to defend the end-to-end cyber ecosystem.

- **“Design Issues”** include latent failure modes in network equipment. The design of network equipment involves people and processes, and potential corruption can occur at the various stages. The latent failure modes deal with undocumented characteristics not discovered during functional acceptance testing. These modes can result from incomplete or mistaken interpretation of the specification or malicious software or hardware capabilities skillfully hidden within the gear. The key issue in this area is the ability to maintain the authenticity of the supply chain process, which is extremely difficult with the evolving open connectivity and diversity of devices on the network.

The NSSG presented the three issue-area scoping documents at the 2008 NSTAC meeting.

Actions Resulting from NSTAC Recommendations

In response to recommendations at NSTAC 15, Congress included provisions in the Violent Crime Control and Law Enforcement Act of 1994 that expanded the law's applicability to telecommunications OAM&P systems. However, the Act did not fully address the concerns that prompted NSTAC's recommendations. Congress subsequently passed the National Information Infrastructure (NII) Protection Act of 1996, which provides measures to strengthen Federal laws against computer crime.

As the IDSG focused primarily on R&D issues related to intrusion detection technology, the Government was exploring broader R&D issues. In particular, the President’s Commission on Critical Infrastructure Protection (PCCIP) examined R&D issues affecting the security of all critical infrastructures. NSTAC’s findings and recommendations are consistent with those resulting from the PCCIP’s work. Further, Presidential Decision Directive (PDD) 63 assigned the Office of Science and Technology Policy (OSTP) responsibility for coordinating R&D agendas and programs for the Government through the National Science and Technology Council.

Since NSTAC 20, three events occurred to address the WOS’s recommendations. First, the OMNCS began expanding the National Telecommunications Coordination Network (NTCN) to provide a mechanism to support intercarrier coordination in the event of a
widespread outage. Second, the FCC designated a Defense Commissioner, and industry and Government developed procedural guidelines to help telecommunications carriers resolve issues with the FCC. Third, Government began focusing more attention on R&D and the need to advance the state-of-the-art equipment for software integrity and address the most significant vulnerabilities of new and evolving telecommunications technologies and services.

Following NSTAC 21, the Government took measures to make critical Government systems Y2K compliant and to develop contingency plans to deal with any potential system failures that might occur. NSTAC’s Year 2000 Problem Status Report, issued in September 1998, influenced the President’s Council on Year 2000 Conversion on the need to develop comprehensive contingency plans to mitigate any potential harmful effects on the Nation’s NS/EP posture.

In response to the recommendation from the NSTAC’s June 1999 Network Group Internet Report: An Examination of the NS/EP Implications of Internet Technologies, the OMNCS established a permanent program to address NS/EP issues related to the Internet. The Priority Services and Internet Technology and Standards program actively promotes NS/EP requirements among pertinent standards bodies, including the Internet Engineering Task Force, the European Telecommunications Standards Institute, and the International Telecommunication Union.

Following NSTAC 22 in June 1999, the NSTAC tasked the IES to develop recommendations for the President regarding how the Government can optimally focus its efforts to enhance the security of the Nation’s NS/EP telecommunications and information technology systems.

The IES subsequently formed the Protecting Systems Task Force (PSTF) to address this task. The PSTF’s objective was to examine current network security strategies to determine whether alternative strategies might more effectively diminish risk and, if appropriate, develop recommendations regarding those alternatives. The PSTF based the methodology for its study, in part, on a model of network security developed by the IDSG in 1997. The IDSG identified four basic components of network security: prevention, detection, response, and mitigation. Using this model, the PSTF sought to answer the question: Could the risk to network security be more effectively reduced by changing the relative focus of network security efforts among these four components?

The PSTF subsequently identified a number of common themes among the organizations providing input to the study as well as some barriers that may impede the ability of an organization to implement an optimal focus among the four components. While the PSTF gathered a representative sample of data to reflect a broad range of industry perspectives, the PSTF determined that it did not have sufficient information to adequately reflect the Government’s perspective. Consequently, the PSTF decided to provide a status report to NSTAC 23 in May 2000 and recommended that the IES consider including in the NSTAC 24 work plan the following task:

* Based on the preliminary analysis and general observations of the PSTF report, complete the analysis of the focus of network security efforts by seeking a broader range of input from Government and academia, as well as additional input from industry.

At the NSTAC 22 meeting, the Honorable John Hamre, Deputy Secretary of Defense, discussed the need for open dialogue between industry and Government in the current era of dynamic technological change. Dr. Hamre requested NSTAC’s assistance to “tackle the much deeper, more complicated problem, which is how do we embed security in depth in the infrastructure upon which we, the Government, depend and upon which you and your customers depend.” NSTAC’s IES subsequently began to scope this issue to determine how to respond to Dr. Hamre’s request. The IES tasked the Embedded Interoperable Security Issue Scoping Group (EISISG) to determine the depth and breadth of this request and provide the IES with a recommended action plan.
The scoping group concluded, through briefings and various interactions with industry and Government, that the NSTAC can help in two distinct ways:

- Promote the Federal Government’s efforts to work with industry to accomplish their mission of incorporating electronic commerce into their operations; and

- Individually support and participate in existing successful industry and Government forums.

Following the recommendation of the NSTAC based on the ISATF’s recommendation to establish a lead organization within the Department to coordinate with industry regarding threat warnings and notifications, DHS created the Information Analysis and Infrastructure Protection Directorate (which was reorganized in 2005 into other directorates within the Department) to identify and assess intelligence information concerning threats to the United States, issue warnings, and take preventative and protective action against those threats. Moreover, DHS consolidated the watch center capabilities of several Federal Government agencies under its auspices.

The U.S. Congress included a provision (section 214) in the Homeland Security Act of 2002 establishing the protection of voluntarily shared critical infrastructure information.

The National Cyber Security Partnership (NCSP) Task Force 4, Working Group 5 designated a liaison to work with T1M1 as they explore technical standards and Common Criteria. T1.276-2003 will be one of the many standards that will be considered as the NCSP works to secure cyberspace. In addition, the International Telecommunication Union is developing an international standard based on the requirements outlined in T1.276-2003.

Finally, the General Services Administration required compliance by all Federal departments and agencies with the American National Standard T1.276-2003 on OAM&P security requirements for the management plane.

Reports Issued

First Steps in Identifying and Remediating Vulnerabilities in Pervasive Software/Protocols, April 2003.

Defining the Edge of the Internet, June 2003.

Obtaining Critical Telecommunications Facility Protection During a Civil Disturbance

Investigation Group / Period of Activity

NS/EP Panel
September 1993 – April 1994

Issue Background
The April 1992 civil disturbance in Los Angeles identified the need for standardized guidelines in requesting the protection of critical telecommunications facilities. In response to the problems noted, the NS/EP Panel met with California State, Federal Government, and telecommunications industry representatives in San Francisco. The meeting participants generally agreed that emergency response personnel were not sufficiently prepared to respond to the crisis that overwhelmed local law enforcement and fire protection services.

Telecommunications industry representatives discussed their difficulties in obtaining protection for their facilities, while other participants acknowledged they had been confused about whom to contact and who had authority during the widespread civil unrest. Because the President declared the crisis to be a Federal emergency, points of contact and authorities changed, causing some confusion. Participants raised this issue at the meeting and questioned how to obtain critical telecommunications facility protection during a Federal emergency. DOJ and Department of Defense (DOD) representatives briefed the panel on the roles of the DOJ, the National Guard, and active duty military personnel during national emergencies.

As a result of the meeting, the NCC, working closely with the NS/EP Panel, agreed to develop guidelines to assist emergency planners during their preparations for and response to civil disturbances. The NS/EP Panel and the NCC developed the document in close coordination with the California Office of Emergency Services and the California Utilities Emergency Association.

In May 1994, the NCC and the NS/EP Panel issued Guidelines for Obtaining Protection of Critical Telecommunications Facilities During Civil Disturbances. The document serves as a guide for telecommunications industry emergency planners when discussing their facility protection needs with local, State, and Federal authorities.

On October 4, 1995, the NS/EP Panel conducted an industry/Government Critical Telecommunications Facilities Protection exercise simultaneously at three separate locations using video teleconferencing linking sites in Arlington, Virginia; Oakland, California; and Los Angeles, California. The exercise provided an opportunity for key emergency response planners at the local, State, and national levels to develop working relationships, gain a better understanding of the many planning factors required by each participant, and define the critical steps in the protection process.

Participants noted this exercise helped clarify the lines of communication when requesting protection from the city to county to State to national levels and helped clarify the various roles and responsibilities of the organizations involved. The activity also highlighted planning shortfalls that required correction to streamline the protection process. The NS/EP Panel identified two key issues for inclusion in the Guidelines for Obtaining Protection of Critical Telecommunications Facilities During Civil Disturbances document: (1) adding procedures for transitioning from Federal control back to State control and (2) discussing the legal aspects of federalized versus non-federalized troops.

In an October 1996 conference call, participants of the industry/Government exercise discussed options for clarifying the federalization issues. The NS/EP Panel added new language to the document, indicating that both federalized and non-federalized National Guard troops, each with different chains of command, may participate in restoring and
maintaining law and order. In addition, the panel added a section authorizing the Secretary of Defense to determine when Federal military forces should withdraw from the disturbance area and when National Guard units would return to State control.

Reports Issued

Guidelines for Obtaining Protection of Critical Telecommunications Facilities During Civil Disturbances, May 1994.

Physical Security of the Telecommunications Network

Investigation Group / Period of Activity

Plans Working Group
December 1990 – September 1991

Vulnerabilities Task Force
May 2002 – February 2003

Trusted Access Task Force
April 2003 – April 2004

Issue Background
The United States Government recognizes the telecommunications sector as a critical component of national security and emergency preparedness (NS/EP) services and the potential for risk due to the growing reliance on the availability of telecommunications resources by the Government, other critical infrastructures, and the general public. Like all other critical infrastructures in the United States, the communications infrastructure remains vulnerable to physical attacks that could significantly damage a facility or free standing component of the network severely enough to interrupt service.

History of NSTAC Actions and Recommendations
On December 13, 1990, at NSTAC XII, an NSTAC Principal questioned the physical security of the public switched network, due to issues surfaced by a National Research Council report on the growing vulnerability of the Nation’s communications network. As a result, the NSTAC established and tasked the Plans Working Group (PWG) with investigating the committee’s growing concerns related to physical security of the telecommunications infrastructure.

In response, the PWG, in conjunction with the National Communications System (NCS) Office of the Joint Secretariat, prepared a physical security study that examined current industry/Government activities, including results from a questionnaire given to the National Coordinating Center’s industry representatives on physical security policy, operational procedures, and methods. The study also documented past NCS efforts regarding physical security of NS/EP telecommunications facilities, sites, and assets and relevant conclusions and recommendations of those past efforts. The study concluded that current industry/Government activity and past NCS documents demonstrated industry and Government had made substantial progress in addressing the physical security of telecommunications facilities, sites, and assets. According to the study, physical security was well planned and managed in general.

After reviewing the information in this study, the NSTAC concluded that the document required no further NSTAC action at that time.

The NSTAC again addressed physical security concerns during the business and executive sessions of the NSTAC XXV Meeting, at which time the Principals again raised concerns related to the physical security of the telecommunications infrastructure in the wake of the attacks against the United States on September 11, 2001. As a result, the NSTAC chartered the Vulnerabilities Task Force (VTF) to examine possible risks associated with the concentration of critical telecommunications assets in telecom hotels and Internet peering points, as well as vulnerabilities involving equipment chain of control and trusted access procedures to telecommunications facilities.

The VTF concluded that, while the telecommunications infrastructure is inherently vulnerable to physical attack, the existence of multiple interconnection facilities, such as telecom hotels, has helped to disperse telecommunications assets over numerous locations, thereby reducing service impacts caused by the loss of any one facility. The task force acknowledged that the physical destruction of individual critical telecommunications facilities could disrupt service at the local level and restrict access to the infrastructure. Therefore, site by site mission critical risk analyses are the only way for organizations to identify possible vulnerabilities that could affect critical functions supporting those missions.
The VTF also addressed the Government’s concern that the telecommunications infrastructure may be especially vulnerable because trusted physical access is granted to individuals requiring entrance to sites where critical telecommunications assets are concentrated. During its deliberations, the task force stressed how the nationwide web of telecommunications assets has become far too extensive to ensure full access control to prevent tampering. While owners can secure critical sites and equipment to the extent possible with electronic locks, padlocks, fences, alarms, security cameras, and the like, access control remains an important issue because the loss of or damage to a site housing numerous critical telecommunications assets could have local or “last mile” impacts and adversely affect NS/EP services. Primary factors influencing the efficacy of access control procedures include individuals with malicious intent, the omnipresent insider threat, the lack of a standard personal identification and background check capabilities, and a lack of universally applied access control procedures and best practices.

Furthermore, the VTF addressed chain of control issues regarding the security of products and services delivered to critical locations. The task force concluded that, although security will remain a priority, no policy actions are deemed necessary at this time. However, if networks become reliant on commodity equipment, this could become an issue for consideration.

In response to the analysis conducted by the VTF, and to mitigate any risks associated with concentration of assets, such as telecom hotels, the NSTAC presented four consecutive reports to the President titled Chain of Control, Telecom Hotels, Trusted Access, and Internet Peering Security with specific recommendations on measures to be undertaken to secure the telecommunications industry.

In direct response to the work delineated in the Trusted Access Report, the NSTAC established the Trusted Access Task Force (TATF) and charged it to examine how industry and the Government can work together to address concerns associated with implementing a national security background check program for access to key facilities.

In response to the NSTAC’s earlier findings in this area, the TATF further examined the concerns that the telecommunications infrastructure may be vulnerable because trusted physical access is granted to individuals who require entrance to sites where telecommunications assets are concentrated without ensuring that the individual does not pose a threat to the facility or infrastructure. The task force proposed that a national standard for personnel screenings using Federal databases, such as the program used by the Department of Homeland Security’s (DHS) Transportation Security Administration (TSA), may be beneficial for industry in mitigating threats to the telecommunications infrastructure.

The TATF also examined the need for a standard, industry-wide, certificate-based picture identification (ID) card. The group noted that the creation of such a card would further solidify the security of the Nation’s telecommunications infrastructure, and also assist in the identification of those employees who have passed the national screening. In an emergency or crisis the credential will also expedite recovery efforts by helping to easily identify personnel who are needed at the site.

During the May 2004 NSTAC XXVII Meeting, the Assistant Secretary for Infrastructure Protection, DHS, emphasized the importance of the group’s work and commented on the need for short-term initiatives that could be undertaken to increase security at numerous upcoming National Special Security Events (NSSE), and could also be used as the basis for long-term perimeter access guidelines. As a result, the TATF, with the assistance of the NCC’s Information Sharing and Analysis Center (ISAC) member companies, proposed the establishment of a pilot program to pre-screen, against Federal terrorist lists/Government databases, a small group of industry employees who may need access to physical sites or critical information concerning NSSEs and associated critical facilities. The TATF deemed the United States Secret Service (USSS) the most appropriate resource for conducting industry screenings on the specified personnel due to their role in planning NSSEs. The pilot screening program produced a list of key lessons learned, as well as several human resources concerns from industry.
Based on the TATF’s analysis the NSTAC recommended that the President direct the appropriate departments and agencies to:

- Coordinate with industry to:
 - Implement and support a standardized screening process for industry to voluntarily conduct screenings on persons who have regular and continued unescorted access to critical telecommunications facilities (e.g., switching facilities), including telecommunications employees and vendors, suppliers, and contractor staff, including:
 - Modeling such a program after the current TSA program by including different relative background investigation levels for various facilities and personnel types;
 - Partnering with DHS, through TSA, to upon request from industry, conduct screenings for industry personnel working at critical private telecommunications facilities; and
 - Working with NRIC to develop industry best practices defining specific criteria for determining which telecommunications employees should be subject to screenings.
 - Make available a standard “tamper-proof,” certificate-based picture identification technology to enable the positive identification of screened individuals at critical sites and to support both physical and logical access for such individuals to critical telecommunications facilities and the networks and information concerning them by building on the ongoing work of the General Services Administration’s Federal Identity Credentialing Committee.
 - Build on the recommendations in the NCC ISAC report, Preparing for a National Special Security Event, to develop a national plan for controlling access at the perimeter of an NSSE or a disaster area. To facilitate the development of a national perimeter access plan to be incorporated in the National Response Plan, the Government should continue to support the screening program coordinated by the NCC ISAC with screenings facilitated by DHS and the USSS.

- Partner with the ISACs across infrastructures to implement screening, credentialing, and access control policies mirroring those recommended for the telecommunications infrastructure for all critical infrastructures.

Actions Related to NSTAC Recommendations

In accordance with the NSTAC’s recommendations and the NCC’s Preparing for a National Special Security Event Report, the Government implemented a pilot program to coordinate industry access for the 2005 Presidential Inauguration. In addition, in a related effort, the NCS developed in early 2006, in partnership with Federal, State, and local Government entities, as well as a private sector company, an access standard operating procedure (SOP) to ensure that private critical infrastructure responders have priority access to disaster areas. The access SOP has been adopted by the State of Georgia and is currently being used as an example for other States.

In addition, the State of Georgia SOP has been distributed to a broader community, including the Homeland Security Advisors and the National Association of Regulatory Commissioners. Currently, a number of State and local governments have begun developing procedures for granting access into disaster areas by private sector organizations. The NCC has received copies of these plans from several States and is currently working with the Federal Emergency Management Agency (FEMA) to identify other State plans. This is an iterative process that requires continuous interaction between Federal Government and various levels of regional and State municipalities. The NCS also sends representatives to quarterly Regional Interagency Steering Committee/meetings in the FEMA regions to complete a survey of the States on their credential programs and access SOPs.
Reports Issued

Response to September 11, 2001, Terrorist Attacks

Investigation Group / Period of Activity

September 11 “Lessons Learned” Ad Hoc Group
October 2001 – December 2001

Issue Background
The terrorist attacks of September 11, 2001, required industry and Government to marshal resources at the national, State, and local levels to support response and recovery efforts. A critical part of those efforts was the restoration of emergency telecommunications services and the provisioning of communications to emergency response personnel. The National Communications System and the NCC, in partnership with NSTAC companies, played a major role in ensuring a quick response and recovery of telecommunications capabilities in the wake of the September 11th attacks. Subsequently, in response to a request from the Special Advisor to the President for Cyberspace Security, the NSTAC formed the September 11th “Lessons Learned” Ad Hoc Group to provide an industry perspective on lessons learned in responding to the September 11th tragic events. The NSTAC Chair discussed the ad hoc group’s analysis in its December 12, 2001, letter to the President.

History of NSTAC Actions and Recommendations
After identifying nearly 40 policy and operational lessons learned from the September 11, 2001, response, the ad hoc group narrowed its focus to the following issues: access procedures to disaster sites, communications procedures, and industry representation within the NCC.

The major issue dealt with procedures for access to disaster sites affected by the attacks. Specifically, inconsistent access control procedures for moving telecommunications equipment and personnel into and out of the World Trade Center disaster area created confusion and presented obstacles for the telecommunications companies engaged in the restoration of the infrastructure. Procedures were revised each time a new authority took responsibility for managing access to the disaster area. Depending on the phase of the response, local responders, State authorities, or Federal personnel were in control. The invocation of both crisis management, i.e. law enforcement officials treated the disaster area as on ongoing crime scene, and consequence management measures served to complicate the access control issue even further.

Based on the ad hoc group’s analysis, the NSTAC recommended that the President direct the appropriate departments and agencies to lead a national effort to examine remedies to perimeter access control issues. The NSTAC determined that these remedies should consider overlapping jurisdictions and result in consistent processes and procedures for incorporation into the Federal Response Plan and State and local emergency response plans. The objective was to ensure that any future national response efforts to unanticipated attacks would be fully planned and coordinated and consistently carried out without delay.

Additionally, the ad hoc group addressed communications procedures during emergencies. The events of September 11, 2001, demonstrated the need for standard procedures to improve communications among decision makers, operational personnel, and other stakeholders during emergencies. Such procedures would have to take into account the severity of the emergency, the classification of the communications, the location of the communicators, and the telecommunications capabilities available, among other factors. The ad hoc group found that the requisite operational procedures were already developed and in place at the NCC, including procedures related to the NCC’s Telecom-ISAC function. The NSTAC had consistently identified ISACs as the appropriate focal points for coordinating communications among industry players and between industry and Government in the new threat environment. Consequently, the ad hoc group concluded that the telecommunications industry should work through NCC representatives to address communications requirements during emergencies.
The ad hoc group also analyzed NCC industry representation. The group acknowledged that the NCC must maintain proper industry representation to meet operational challenges in the evolving threat and technology environments. In the aftermath of the September 11, 2001, attacks, the NS/EP community reaffirmed the critical role wireless communications plays in response to national emergencies. Similarly, Internet services were deemed to be increasingly important in disaster response and central to the mission-critical operations of business and Government agencies. Accordingly, the ad hoc group examined the mix of industry representation in the NCC and found that NCC members represented (1) the majority of the wireless carrier market share; (2) more than half of the Internet backbone provider market; and (3) a minority of the Internet access provider market. The ad hoc group concluded that augmenting Internet access provider membership in the NCC could help the NCC better address potential network security issues. Such issues included the threat of distributed denial of service attacks and software viruses launched by end users via dial-up connections to the network.

As part of its lessons learned analysis, the ad hoc group reviewed previous NSTAC recommendations, recognizing that the NSTAC’s cumulative work could provide valuable information related to ensuring reliable infrastructure services and securing the Nation’s critical facilities. The group also recognized that the sharing of such information had gained new importance with the national focus on homeland security. Previous NSTAC studies selected for review by the group were in the areas of cellular priority access, energy service priority, protection of critical facilities, public network convergence and vulnerabilities, and national information sharing, analysis, and warning. The group concluded that such studies and associated recommendations could demonstrate best practices for use by other organizations concerned with the physical and cyber security of critical infrastructures supporting multiple sectors.

Reports Issued

NSTAC Letter to the President, December 17, 2001.
Termination of Cellular Networks During Emergency Situations

Investigation Group / Period of Activity

Cellular Service Shutdown Ad Hoc Working Group
August 2005 – January 2006

Issue Background
As a direct result of the bombings that took place in the London transportation system in July 2005, U.S. authorities initiated the shut down of cellular network services in the Lincoln, Holland, Queens, and Brooklyn Battery Tunnels. The Federal Government based this precautionary measure on the suspicion that similar attacks might also be perpetrated in the tunnels leading to and from New York City. Though the decision was rooted in vital security concerns, the resulting situation, undertaken without prior notice to wireless carriers or the public, created disorder for both Government and the private sector at a time when use of the communications infrastructure was most needed. Shortly following these activities, the National Coordinating Center (NCC) hosted a teleconference to discuss the need to develop a process for determining if and when cellular shutdown activities should be undertaken in the future in light of the serious impact these efforts could have had, not only on access by the public to emergency communications services during these situations, but also on public trust in the communications infrastructure in general.

History of NSTAC Actions and Recommendations
These actions highlighted, within the President’s National Security Telecommunications Advisory Committee (NSTAC) community, the need for a process to ensure that future similar decisions meet the Nation’s security goals and ensure the protection of critical infrastructures. Consequently, on August 18, 2005, the NSTAC established a Principal level task force to formulate, on an expedited basis, recommendations to effect efficient coordinated action between industry and Government in times of national emergency.

To facilitate more coordinated action, the NSTAC recommended that the President direct his departments and agencies to:

- Work to implement a simple process, building upon existing processes, with the Department of Homeland Security (DHS) and National Communications System (NCS) coordination enabling the Government to speak with one voice, provide decision makers with relevant information, and provide wireless carriers with Government-authenticated decisions for implementation; and

- Achieve rapid implementation through the Homeland Security Advisor of each State, in conjunction with the NCS and the Office of State and Local Government Coordination, DHS.

The group concluded its activities upon NSTAC approval of the Letter and recommendations in January 2006.

Actions Resulting from NSTAC Recommendations
In support of the recommendations, the NCS approved Standard Operating Procedure (SOP) 303, “Emergency Wireless Protocols (EWP),” on March 9, 2006, codifying a shutdown and restoration process for use by commercial and private wireless networks during national crises. Under the process, the NCC will function as the focal point for coordinating any actions leading up to and following the termination of private wireless network connections, both within a localized area, such as a tunnel or bridge, and within an entire metropolitan area. The decision to shutdown service will be made by State Homeland Security Advisors, their designees, or representatives of the DHS Homeland Security Operations Center. Once the request has been made by these entities, the NCC will operate as an authenticating body, notifying the carriers in the affected area of the decision. The NCC will also ask the requestor a series of questions to determine if the shutdown is a necessary action. After making the determination that the shutdown is no longer required, the NCC will initiate a similar process to reestablish service. The NCS continues to work with the Office of State and Local
Government Coordination at DHS, and the Homeland Security Advisor for each State to initiate the rapid implementation of these procedures.

The Government Emergency Telecommunications Service (GETS) and Wireless Priority Service (WPS) Program Management Office (PMO) has been assisting the NCC to develop an EWP training and awareness briefing. The GETS/WPS Regional Outreach Coordinators have been trained to deliver the EWP outreach to augment the NCC and industry efforts to make sure State and local entities are aware of SOP 303.

Reports Issued

NSTAC Cellular Shutdown Letter to the President, January 2006
Telecommunications Industry Mobilization

Investigation Group / Period of Activity

Telecommunications Industry Mobilization (TIM) Task Force
June 1985 – June 1989

Issue Background
Recognizing the prominent role of the telecommunications industry in a national mobilization, the NSTAC formed the TIM Task Force and instructed it to develop an issue statement. Meanwhile, the OMNCS developed the NS/EP Telecommunications Plan of Action to implement relevant portions of E.O. 12472 and National Security Decision Directives 47 and 97. The plan, approved by the NCS Committee of Principals (COP) in 1985, included an action to provide Government leadership in telecommunications industry mobilization planning activities.

In September 1985, the TIM Task Force identified the following mobilization subjects as needing further study:

- Telecommunications service surge requirements;
- Personnel issues;
- Maintenance of stockpiles and inventories;
- Dependence on foreign sources;
- Dependence on other infrastructure systems;
- Industry and Government mobilization management structure; and
- Jurisdictional issues.

The TIM Task Force recommended a industry and Government forum be established to assess the seven TIM subject areas. In December 1985, industry and Government concurred with the formation of the Joint Industry/Government TIM Group, which began addressing TIM subjects on January 29, 1986.

History of NSTAC Actions and Recommendations
The NSTAC approved and forwarded to the President the Joint TIM Group’s reports, Personnel Issues and Dependence on Foreign Sources, on November 6, 1987, and approved and forwarded to the President the reports, Government and Industry Mobilization Management Structure and Maintenance of Stockpiles and Inventories on September 22, 1988.

On June 8, 1989, the NSTAC approved and forwarded to the President the Joint TIM Group’s final reports on Telecommunications Service Surge Requirements, Dependence on other Infrastructure Systems, and Jurisdictional Issues, a final report with overall recommendations on telecommunications industry mobilization. The NSTAC then disbanded the Joint TIM Group.

Actions Resulting from NSTAC Recommendations
The original Energy Task Force further defined the TIM recommendations on energy issues, including underground storage tank regulations.

The National Security Council and the Executive Office of the President initiated a review of overall national security mobilization preparedness. The Federal Emergency Management Agency implemented several TIM recommendations as part of the Graduated Mobilization Response Plan. The OMNCS Office of the Joint Secretariat developed a plan of action, involving all NCS member organizations, designed to track implementation of the TIM recommendations. The plan included identification of task responsibilities, a time-phased work plan, and a schedule of status reports. The Baseline Mobilization program involved assigning “lead” organizations to follow up and take actions necessary to implement each TIM recommendation during a 3-year period, with 36 tasks distributed among the NCS member organizations.

In September 1993, the OMNCS Office of the Joint Secretariat issued its Final Report on TIM Recommendations. The report presented the actions taken by various NCS
member agencies on 11 recommendations having a significant and immediate effect on NS/EP telecommunications. The remaining 25 recommendations, while of considerable importance, were of somewhat lesser significance relative to their immediate impact on NS/EP telecommunications. The telecommunications industry had substantially implemented those recommendations and the report addressed them. The OMNCS believed that the agencies assigned to implement the recommendations had responded favorably, and that the TIM program could be considered a success. The OMNCS also believed that further formal monitoring of the TIM program was not necessary.

Reports Issued

Dependence on Foreign Sources, October 1987.

Dependence on Other Infrastructure Systems, April 1989.

Assessment of TIM Capabilities (V. I), April 1989.

TIM Subject Reports (V. II), April 1989.

Exercise Participation, April 1989.

Telecommunications Service Priority

Investigation Group / Period of Activity

Telecommunications Service Priority (TSP) Task Force
December 1984 – December 1990

Issue Background
In December 1984, the NSTAC identified TSP as an urgent issue because of the need for a system that authorized both priority provisioning and restoration of NS/EP services for Federal, State, and local governments and private users. The TSP System replaced the Restoration Priority (RP) System, which covered only the restoration of Federal Government, inter-city, and private lines. The NSTAC IES established the TSP Task Force on February 21, 1985, to advise and assist the OMNCS in developing the TSP System, specifically regarding provisioning, restoration, maintenance, legal, and regulatory issues.

History of NSTAC Actions and Recommendations
The task force worked closely with the OMNCS in the development of the TSP System and provided assistance with its implementation. Specifically, the task force had a significant advisory role in creating the Petition for Rulemaking and Proposed Federal Communications Commission (FCC) Rules for the TSP System. The task force also assisted the TSP Task Force on February 21, 1985, to advise and assist the OMNCS in developing the TSP System, specifically regarding provisioning, restoration, maintenance, legal, and regulatory issues.

The task force had a role in both the creation of the TSP Oversight Committee and the selection of Oversight Committee members. During the week of September 28 through October 3, 1987, the TSP Task Force and NCS COR met and discussed the operational framework for the TSP System, including the establishment of the TSP Oversight Committee. On March 29, 1990, the TSP Task Force recommended that the Manager, NCS, appoint the following initial members to the TSP Oversight Committee: AT&T, Contel, McCaw Cellular, MCI, Bellcore, Sprint, GTE, State of California, State of South Carolina, Department of Transportation, Federal Emergency Management Agency, DOD, GSA, Department of Energy, Department of Commerce, National Telecommunications and Information Administration, and the FCC. The NSTAC approved the membership list and delegated future industry TSP Oversight Committee membership nominating authority to the IES.

Additionally, the task force assisted in developing the documentation that made the TSP System operational. The task force helped create the TSP Service Vendor Handbook, which provides operational details of the TSP System that service vendors will use as guidance for implementation and operation of TSP. The task force developed the TSP Information Guide, a TSP primer for small telephone companies, published by the United States Telephone Association in December 1989. Furthermore, the task force had a significant advisory role in creating NCS issuances on TSP procedures. Specifically, the task force helped develop NCS Directive 3-1, which clarified the responsibilities of and procedures for all TSP System entities. The task force also assisted in the development of the TSP Service User Manual, which provided a set of guidelines for all users of the TSP System.

The task force presented its final report at NSTAC XII in December 1990, including a recommendation to the President, which stated that the Federal Government should continue to support and administer the TSP System, as defined in NCS Directive 3-1.

Actions Resulting from NSTAC Recommendations
TSP System implementation began on September 10, 1990. The implementation plan included a 2.5-year period for transition from the RP to the TSP System. The TSP System became fully operational on March 9, 1993.
Today, the TSP Oversight Committee continues to meet on a biannual basis. Likewise, the OMNCS continues to provide the operational support for the TSP System.

Reports Issued

TSP Information Guide, December 1989 (published for the TSP Task Force by the U.S. Telephone Association, now the U.S. Telecom Association).

Telecommunications Service Priority Carrier Liability

Investigation Group / Period of Activity

Industry Executive Subcommittee (IES)
Funding and Regulatory Working Group (FRWG)

Issue Background
The Federal Communications Commission Telecommunications Service Priority (TSP) Report and Order authorizes telecommunications carriers to install or restore NS/EP telecommunications on a priority basis over services that do not serve NS/EP requirements. The FRWG reviewed this issue to further define the protection against liability offered by the TSP Report and Order. One area of concern identified by the working group was 911 service. The working group concurred that the TSP Report and Order offered adequate protection to carriers. The FRWG also observed that services provided under contract rather than through tariffs may not be protected by the TSP Report and Order language. The FRWG reached the following conclusions:

- The TSP Report and Order offered sufficient protection against liability charges arising from the disruption of non-NS/EP user tariffed services;

- The TSP Report and Order had not fully defined the legal ramifications of preempting a contracted versus a tariffed service; and

- Carriers should develop internal policies for preempting non-NS/EP users.

On March 15, 1991, the FRWG reported its findings to the IES. The IES concurred with the FRWG’s findings.
Telecommunications Systems Survivability

Investigation Group / Period of Activity

Telecommunications Systems Survivability (TSS) Task Force
March 1986 – June 1989

Issue Background
The NSTAC developed the TSS issue in December 1982 to address all aspects of the telecommunications survivability question. The Commercial Satellite Survivability (CSS) and Commercial Network Survivability (CNS) issues evolved from the NSTAC's initial focus on TSS. On March 6, 1986, the NSTAC IES established the TSS Task Force and directed it to determine whether NSTAC recommendations had inconsistencies, whether the recommendations met the Government's NS/EP telecommunications policy requirements, and whether the Government effectively responded to the recommendations. In early 1987, the NSTAC charged the TSS Task Force to assess the impact of new technologies on telecommunications survivability.

The TSS Task Force concluded that no serious inconsistencies or gaps existed among NSTAC recommendations and the recommendations sufficiently met the Government's NS/EP telecommunications policy objectives. The NSTAC forwarded to the President the TSS Task Force recommendation to initiate a study to identify options for ensuring survivable electric power. The TSS Task Force completed reports on Government actions taken in response to NSTAC recommendations from the CNS, CSS, and Electromagnetic Pulse Task Forces, and submitted them to the NSTAC on November 6, 1987. The task force submitted similar reports on automated information processing and the National Coordinating Mechanism to NSTAC IX on September 22, 1988. The NSTAC approved these reports and forwarded them to the President on the respective dates. The TSS Task Force also completed an assessment of the applicability of network management technology to NS/EP telecommunications survivability, which the NSTAC forwarded to the President on September 22, 1988. The TSS Task Force assisted the OMNCS in developing the Federal Government's policy on essential line service (ELS).

On June 8, 1989, the NSTAC approved the TSS Task Force's final report and disbanded the task force. The NSTAC also directed the IES to proceed with the study of intelligent networks and virtual networks usefulness for enhancing network survivability, which the TSS Task Force initiated, pending review of the issue by the IES Plans Working Group (PWG).

History of NSTAC Actions and Recommendations
The NSTAC approved the TSS Task Force's final report and disbanded the task force on June 8, 1989.

Actions Resulting from NSTAC Recommendations
The TSS Task Force's electric power recommendations led to the establishment of the original Energy Task Force, and the intelligent networks study led to the establishment of the Intelligent Networks Task Force. The IES, through the OWG NS/EP Panel, provides a continuing evaluation of the overall progress and direction of TSS. The NS/EP Panel identifies any new concerns relating to TSS, advises the OWG of areas requiring NSTAC or NCS actions or study, monitors the status of general survivability of telecommunications systems, and reports periodically on the status of TSS to the OWG.

As part of the CNS program, the OMNCS Office of Plans and Programs monitored network management developments, including local exchange carrier network management capabilities. In addition, members assigned to the OMNCS Office of Technology and Standards Network Management and Technology Planning task assessed the effects of congestion on NS/EP telecommunications and how expert systems could improve network management for NS/EP telecommunications. The NCS continued to encourage compliance with NCS Notice 3-0-1, NS/EP ELS, which recommended that Federal departments and agencies having NS/EP telecommunications missions consider obtaining ELS to increase their probability of obtaining a timely dial
tone. The Department of Energy was directed to implement several Energy Task Force recommendations.

Reports Issued

Underground Storage Tanks

Investigation Group / Period of Activity

Industry Executive Subcommittee Funding and Regulatory Working Group (FRWG)
April 1990 – March 1991

Issue Background
In 1988, the Energy Task Force voiced concerns that the Environmental Protection Agency (EPA) regulations on underground fuel storage tanks would encourage telecommunications carriers to reduce the amount of fuel available for their backup generators. The EPA regulations (40 Code of Federal Regulations Part 280), originally proposed in April 1987, included standards for maintaining the integrity of the tank, protecting against spill and overfill, and detecting leaks. The telecommunications industry modified or replaced several thousand underground storage tanks (UST) pursuant to these regulations and added detection monitoring systems.

The Energy Task Force considered the implications of the regulations and concluded that if the telecommunications industry complied with the new EPA regulations, the public switched network might not have enough backup fuel storage capacity in all locations to operate through normal power outages. The Energy Task Force recommended that the Government grant a national security waiver from those parts of the regulations that affected NS/EP telecommunications providers.

The FRWG received briefings from the EPA and support staff on EPA UST regulations. The FRWG also investigated UST regulations at the Federal, State, and local levels. The group also surveyed several local exchange carriers and interexchange carriers to determine UST policies and procedures. The survey revealed that industry was reviewing the UST requirements as a result of the EPA regulations, and that companies used several criteria when developing UST requirements. The FRWG developed a paper outlining the UST issue and recommended the following:

- A waiver of EPA UST regulations should not be pursued. The waiver would not make a significant contribution to meeting Government backup power needs because companies were already pursuing their own UST programs, State and local regulations would be addressed regardless of any Federal waiver, and telecommunications companies would probably not use Federal waivers unless mandated by the Government.

The FRWG supported the implementation of an Energy Task Force recommendation:

- Government should specify an NS/EP backup fuel requirement in cooperation with industry.

Actions Resulting from NSTAC Recommendations
At the December 12, 1990, NSTAC XII Meeting, members agreed with the recommendation not to pursue a waiver of EPA UST regulations.

Reports Issued

Wireless Security

Investigation Group / Period of Activity

Wireless Task Force (WTF)
April 2002 – January 2003

Issue Background
Numerous wireless technologies are being used with greater regularity to transmit voice, data, and video in support of NS/EP operations. However, there are increasing concerns that wireless communications could expose NS/EP users to new security threats and vulnerabilities. As such, the NS/EP community needs to understand its security requirements and identify potential wireless vulnerabilities.

Challenges exist at many levels, including product design, wireless standards, and wireless/Internet convergence. First, the wide use of commercial off-the-shelf products and legacy equipment by the NS/EP community is an important consideration because these devices and equipment were not designed with NS/EP security requirements in mind and sometimes without security features at all. Second, interoperability issues arise from the implementation of different security models and standards—for instance, there are several conflicting policies either established or in development, designed to inhibit or prohibit the use of particular wireless capabilities and connectivity to classified networks and computers. Third, the extension of the Internet into the wireless domain adds new security challenges.

At the NSTAC XXV Meeting held on March 13, 2002, participants discussed the topic of security vulnerabilities in wireless communications devices and networks. Since subscribers use wireless technologies to transmit voice, data, and video in support of NS/EP operations, meeting participants agreed that the NS/EP community needed to identify its security requirements and understand potential wireless vulnerabilities. After an initial scoping of wireless security and other related wireless issues, the NSTAC IES formed the WTF at its April 18, 2002, meeting. The IES tasked the WTF to determine how the NS/EP user can operate in a secure environment and to provide conclusions and recommendations to the President regarding wireless security.

History of NSTAC Actions and Recommendations
To adequately discuss these subjects and formulate actionable recommendations designed to help offset wireless threats and vulnerabilities, the WTF agreed to: (1) define the terms “wireless” and “wireless security;” (2) identify NS/EP wireless users’ unique requirements; (3) compile a list of wireless vulnerabilities and threats; and (4) where known, identify mitigation approaches to address wireless vulnerabilities and threats. The task force used the expertise of subject matter experts from NSTAC member companies, as well as other information technology companies, industry associations, and Government participants, throughout its study of wireless security.

After defining NS/EP user requirements, the task force identified advantages to using wireless systems for NS/EP communications, as well as vulnerabilities and threats that must be addressed before using wireless capabilities for mission-critical NS/EP communications. The WTF’s findings concurred with other prevalent studies, which determined that any vulnerabilities that exist in conventional wired and computer communications and networks are applicable to wireless technologies.

The WTF concluded that there is a range of wireless security, which varies from effective, practical security on the commercial wireless networks, to significantly less security on the public wireless networks. As such, an NS/EP agency must ensure that its NS/EP communications are secured appropriately for its mission. The WTF also agreed that the extent to which these vulnerabilities have been or can be addressed would be a function of the degree to which organizations with experience in security issues manage the network.
The WTF concluded its analysis of wireless security in January 2003 and presented its findings in its WTF Report on Wireless Security. The task force found that wireless security challenges exist at many levels, including product design, wireless standards, and wireless/Internet convergence. Based on its analysis of issues related to wireless security, the NSTAC offered the following recommendations to the President:

- Direct Federal departments and agencies to construct mitigation and alleviation policies regarding wireless vulnerabilities and further consider the applicability of the recent wireless security policies of the NIST and the Department of Defense to all Federal departments and agencies;

- Direct Government chief information officers to immediately emphasize enterprise management controls, with respect to wireless devices, to ensure that appropriate security controls are implemented, given that the banning of wireless devices is counterproductive and ignores the efficiency that such devices brings to users;

- Direct Federal departments and agencies to work in concert with industry to develop security principles and to resolve security-related deficiencies in wireless devices when employed by NS/EP users;

- Direct Federal departments and agencies using wireless communications to address wireless security threats and vulnerabilities, and to consider the end-to-end security of their respective communications and information system capabilities;

- Direct Federal departments and agencies using wireless communications to purchase and implement fully tested and compliant secure wireless products and services;

- Direct appropriate staff to advocate funding initiatives for replacing non-secure analog with secure digital NS/EP equipment and systems;

- Direct Federal departments and agencies using microwave communications facilities to address unprotected link security vulnerabilities. In addition, advise State and local Governments and other critical infrastructure providers of the vulnerability of unprotected microwave communications as part of the homeland security initiative; and

- Establish policies regarding the public availability and dissemination of Federal critical infrastructure information (such as the policies on Internet availability of the FCC and the Federal Aviation Administration databases of tower locations).

At a December 2, 2002, IES Meeting briefing, the Chair of the President's Critical Infrastructure Protection Board requested that the WTF consider examining the security of Internet-enabled wireless communications devices and the efficacy of installing anti-virus software for wireless telephones, since such devices are becoming increasingly more integrated with computing functions. In response to the Administration's request, the WTF scoped the issue.

The WTF reported a number of observations on the security of Internet-enabled wireless devices in its Wireless Task Force Findings: Security of Internet-Enabled Wireless Devices, January 2003. The task force agreed that it is a serious issue, which is not limited exclusively to “wireless” or “third generation” wireless devices, because any device connected to the Internet can be attacked. The WTF concluded that although the tasking referenced wireless specifically, the NSTAC has already studied the larger issue as it relates to the convergence of telecommunications networks and the Internet. The complete findings based on the task force’s initial scoping were forwarded to NSTAC stakeholders for review.

The WTF concluded its activities upon NSTAC approval of its reports and finalization of its findings on the security of Internet-enabled wireless devices.
Actions Resulting from NSTAC Recommendations
NSTAC wireless security recommendations were formed after considerable collaboration with experts from industry and the Government. The recommendations were provided to and well received by other technical and policy advisory groups. For example, the Network Reliability and Interoperability Council (NRIC) VI, which assures homeland security, optimal reliability, interoperability, and interconnectivity of, and accessibility to, the public telecommunications networks, maintained close coordination with NSTAC efforts and recommendations. NRIC’s best practices and recommendations complemented NSTAC findings regarding wireless security principles and the resolution of security-related deficiencies in wireless devices.

Reports Issued

Wireless Services
(Including Priority Services)

Investigation Group / Period of Activity

Wireless/Low-Bit-Rate Digital Services Task Force (W/LBRDSTF)
March 1991 – October 1991

Wireless Services Task Force (WSTF)
December 1991 – September 1995

Legislative and Regulatory Task Force (LRTF)
February 2001 – Present

Wireless Task force (WTF)
April 2002 – January 2003

Issue Background
At its March 15, 1991, meeting, the President’s National Security Telecommunications Advisory Committee’s (NSTAC) Industry Executive Subcommittee (IES) established the Wireless/Low-Bit-Rate Digital Services Task Force (W/LBRDSTF) to address Office of the Manager, National Communications System (OMNCS) concerns about the possible adverse effects of developments in the rapidly evolving wireless telecommunications sector that would impact the public switched network’s ability to handle secure voice and data communications. The OMNCS recommended that the task force’s charge be to: (1) define the scope of the issues regarding wireless services, and (2) advise the Government on how to minimize any adverse effects of emerging digital mobile communications standards and technologies on mobile national security and emergency preparedness (NS/EP) users.

On October 3, 1991, in its final NSTAC XIII report, the W/LBRDSTF concluded that no Government organization existed for defining NS/EP requirements for wireless digital communications. In addition, the task force determined that compatibility problems existed between certain existing and developing voice/data devices (for example, secure telephone unit [STU]-III analog) and the emerging digital wireless network. Based on the task force’s report, the NSTAC recommended that the Government determine the appropriate organization to address and monitor wireless digital interface issues. Accordingly, the Government tasked the OMNCS Wireless Services Program Office (WSPO) with the responsibility.

In December 1991, following the establishment of the WSPO, the IES approved the establishment of a follow-on Wireless Services Task Force (WSTF). The IES tasked the WSTF to provide an industry perspective to the WSPO and to assist in developing a plan of action for addressing NS/EP wireless issues. This included identifying Government requirements and developing a white paper to support standards activities. The IES also instructed the task force to continue its investigation into wireless services supporting NS/EP. To that end, the task force surveyed the evolving wireless services environment and identified and assessed candidate solutions that would ensure interoperability and connectivity among wireless services and between wireless and non-wireless systems. The WSTF, in conjunction with the OMNCS WSPO and the Federal Wireless Users Forum, addressed methods for incorporating priority access into wireless systems for NS/EP use. In addition, they determined the potential for emerging wireless technologies to complement existing communications support in the Federal Response Plan (FRP) Emergency Support Function (ESF) #2 (Communications).

The WSTF established the Cellular Priority Access Services (CPAS) subgroup in July 1994 to investigate technical, administrative, and regulatory issues associated with the deployment of a nationwide priority access capability for NS/EP cellular users.

On March 2, 1995, the IES instructed the WSTF to determine the NS/EP implications of, and scope the future task force involvement in, wireless technologies. These technologies include land mobile radio/specialized mobile radio, mobile satellite services, personal communications services, and mobile wireless access to data networks.
At its September 22, 1995, meeting, the IES placed the WSTF on standby status until needed by the Government. At that meeting, the IES also voted to place the CPAS subgroup under the direction of the NS/EP group. Since then, the subgroup has assisted in developing CPAS forms and a manual for the administration of CPAS. Additionally, the subgroup monitored the development and modifications of standards and regulatory issues relevant to CPAS, which is now referred to as Wireless Priority Service (WPS).

The NSTAC revisited WPS issues during the NSTAC XXVI cycle (March 2002–April 2003). After scoping current wireless issues related to NS/EP users, the IES formed the Wireless Task Force (WTF) to study issues relating to the ubiquitous rollout of WPS at its April 18, 2002, meeting. In addition to analyzing the impediments to the ubiquitous rollout of WPS, the IES detailed the task force to study how WPS can be promoted publicly and explore non-device specific and secure solutions for deploying WPS.

History of NSTAC Actions and Recommendations
At the October 3, 1991, NSTAC XIII Meeting, the NSTAC approved the following W/LBRDSTF recommendations to the President:

► The Government should establish a focal point, supported by the National Security Agency (NSA) and the National Institute of Standards and Technology (NIST), to address and monitor wireless digital interface issues; and

► The Government should formulate policies at a high level to ensure that all wireless digital service acquisition activities take NS/EP needs into account.

The NSTAC reconvened the task force following the establishment of the WSPO.

At the March 4, 1994, NSTAC XVI Meeting, the NSTAC approved the WSTF report and forwarded recommendations to the Government on pursuing implementation of a single, nationwide priority access capability for NS/EP users and expanding the FRP ESF#2 planning process to make more effective use of wireless technologies and services.

At the NSTAC XVII Meeting, held on January 12, 1995, the task force reported on its activities in the areas of wireless interoperability and cellular priority access.

At the NSTAC XVIII Meeting, the WSTF presented its task force report and recommendations on the NS/EP implications of land mobile radio/specialized mobile radio, mobile satellite services, personal communications services, and wireless data to the President. The report had several recommendations related to the Government continuing to actively exploit emerging technologies in support of NS/EP activities by working at the international, Federal, State, and local levels in defining wireless requirements.

Additionally, the subgroup submitted the Cellular Priority Access Services Subgroup Report, which recommended the Government continue to gain a consensus on CPAS regulatory, administrative, and technical issues to finalize a comprehensive CPAS implementation strategy.

At the NSTAC XXV Executive Breakfast on March 13, 2002, Senator Robert Bennett (R-UT) requested that the NSTAC revisit the issue of WPS and further examine obstacles to the ubiquitous rollout of WPS. In response to this charge, the NSTAC tasked the WTF with assessing the issues related to the ubiquitous deployment of WPS. The WTF closely monitored the deployment of WPS, noting that the ubiquitous deployment of the program had not been achieved for a variety of operational, technical, funding, and regulatory reasons. WTF members agreed that the ubiquitous, nationwide deployment of WPS would be achieved through the inclusion of all wireless technologies in the solution set, satellite back-up capabilities, and the participation of large and small wireless carriers. Members also cited inadequate Government funding, lack of liability protection for carriers, and technological limitations as additional impediments to the ubiquitous rollout of WPS. Lastly, the WTF determined the need for an effective WPS outreach...
campaign to State and local Governments, smaller wireless carriers, private sector critical infrastructure protection providers, and the general public. Providing these entities with timely and accurate information would dispel misconceptions regarding the WPS program and facilitate the inclusion of WPS in various NS/EP homeland security, contingency, and disaster recovery plans.

As a result of this analysis, the NSTAC offered the following recommendations to the President:

- Encourage the development of WPS solutions for all wireless technologies (e.g., cellular/personal communications service, third generation networks, paging, and other wireless data services) to maximize WPS coverage, increase ubiquity, and give NS/EP users the flexibility to handle a variety of emergencies and disasters;

- Reaffirm that the Federal Communications Commission’s (FCC) Second Report and Order (R&O) on Priority Access Service (PAS) does extend liability protection to wireless priority solution providers equivalent to liability protection found in wireline priority communications programs;

- Encourage and support adequate funding for the development and deployment of a multi-technology and multi-carrier WPS program, including a satellite backup capability to continue through WPS full operational capability and later generations and integration with the Government Emergency Telecommunications Service (GETS);

- Direct the appropriate departments and agencies to conduct outreach and educational campaigns regarding WPS and its role in homeland security, specifically targeting:
 - State and local Governments—Emphasizing the role of WPS in homeland security and the importance of expediting zoning and siting requests from wireless carriers, including the use of Government sites and buildings, to increase WPS coverage and ubiquity
 - Smaller carriers—Educating them on WPS and encouraging their involvement in the program
 - Private sector critical infrastructure providers—Facilitating greater awareness of the WPS program and enabling improved contingency and disaster recovery programs
 - The general public—Detailing the benefits WPS provides for public safety and homeland security

- Direct the National Communications System (NCS), Government agencies and departments, and organizations with NS/EP missions to implement proactive policies regarding the implementation and use of the WPS program, including:
 - Stockpiling WPS-enabled phones for large-scale distribution to NS/EP users during emergencies
 - Monitoring WPS usage following distribution of WPS handsets to protect against fraud and abuse
 - Developing a WPS directory assistance function, enabling NS/EP users to locate one another during emergencies

- Direct the NCS and Government agencies and departments involved in WPS planning and program management to address the technical limitations of wireless and other network technologies that may have a negative impact on the assurance, reliability, and availability of an end-to-end WPS solution. These limitations include but are not limited to:
 - Insufficient commercial capacity available to support NS/EP users
 - Technical infeasibility of offering wireless priority at the network egress within the initial operating capability time frame
 - Processing limitations of Signaling System 7 (SS7) during periods of congestion
• Security vulnerabilities resulting from the convergence of voice and data networks and the SS7

• Challenges associated with the integration of GETS with WPS.

In addition, the WTF worked jointly with the Legislative and Regulatory Task Force (LRTF) to assess the legal and regulatory concerns with WPS during the NSTAC XXVI cycle. Specifically, they addressed whether the FCC should revise the Second R&O for PAS. The NSTAC reviewed the R&O and, on January 22, 2003, sent a letter to the President offering recommendations on PAS. In the letter, the NSTAC commended the FCC for adopting a Second R&O for PAS, which indicates that carriers providing PAS shall have liability immunity from Section 202 of the Communications Act; states that the FCC and the National Telecommunications and Information Administration (NTIA) should accelerate on-going efforts to improve interoperability between Federal, State, and local public safety communications agencies; and encourages the Administration to support full and adequate Federal funding for PAS.

Actions Resulting from NSTAC Recommendations

A Memorandum of Understanding established the WSPO as the Government focal point within the OMNCS Technology and Standards Division (now the OMNCS Technology and Programs Division), with full-time participation from NSA and NIST.

On October 19, 1995, the OMNCS, through the WSPO, submitted a CPAS Petition for Rulemaking to the FCC to authorize the nationwide CPAS service. After two years of soliciting comments from industry on the CPAS Petition for Rulemaking, the FCC adopted the First R&O for PAS on August 6, 1998.

The OMNCS worked on CPAS implementation through four parallel approaches: modifying cellular standards to incorporate CPAS, encouraging the FCC to issue CPAS rules, developing CPAS administrative processes, and stimulating competitive interests of service providers to implement the CPAS capability.

On July 3, 2000, the FCC adopted the Second R&O for PAS, establishing the regulatory, administrative, and operational framework enabling commercial mobile radio service providers to offer WPS to NS/EP personnel. The R&O also provided WPS priority levels and qualifying criteria to be used as the basis for all WPS assignments. In their rulemaking, the FCC determined that: (1) WPS was in the public interest; (2) WPS offering should be voluntary; (3) carriers should have limited liability if uniform operating procedures were followed; and (4) the NCS is responsible for day-to-day administration of the program.

After the terrorist attacks of September 11, 2001, the NS/EP community had a renewed interest in fully implementing WPS and White House personnel directed the NCS to establish an active program. A WPS-like solution was made available in Salt Lake City in time for the 2002 Olympic Winter Games and the NCS launched an immediate solution in May 2002 in the greater metropolitan areas of Washington, DC, and New York City. As a result of the NCS integration into the Department of Homeland Security (DHS), WPS is now offered through the DHS Information Analysis and Infrastructure Protection (IAIP) Directorate. WPS is offered in most major metropolitan markets on the Global System for Mobile Communications platform. The initial carrier for WPS is T-Mobile, which will reach full operating capability in 2004. In addition, the WPS program expanded to additional GSM carriers in 2004, including AT&T Wireless, Cingular, and Nextel. There are also plans to expand WPS to be offered on the Code Division Multiple Access platform in the future.

Reports Issued

Footnote

1 PanAmSat was purchased by IntelSat in 2006. IntelSat remains as the only satellite company on the NSTAC.
Charter of the President’s National Security Telecommunications Advisory Committee

I. Official Designation

Under Executive Order 12382, dated September 13, 1982, and Executive Order 13316, dated September 30, 2003, this Committee is officially designated the President’s National Security Telecommunications Advisory Committee (“the Committee”).

II. Membership and Organization

A. Membership and organization will be in accordance with Executive Order 12382, dated September 13, 1982.

B. There will be an Executive Secretary who will be the Manager, National Communications System, under section 10(e) of the Federal Advisory Committee Act as amended (5 U.S.C. App. II).

C. The Committee will provide such guidance and direction as is necessary and appropriate to ensure the effective functioning of any subcommittee so established. Except where a special rule applicable to such subcommittees appears in an amendment to this Charter, the provisions of this Charter shall apply (with necessary changes appropriate to subcommittees) to the subcommittees.

D. The Chairman of the Federal Communications Commission will be invited to participate in the activities of the Committee and its subcommittees. Agencies and officials of the Executive Branch may also be invited to participate.

III. Objective, Scope of Activity, and Duties

A. The Committee will function in accordance with Section 2 of Executive Order 12382, dated September 13, 1982. The Committee will provide information and advice to the President on all telecommunications aspects affecting national security and emergency preparedness. Key policy statements include, but are not limited to, Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions and National Security Decision Directive Number 97 (NSDD-97), “National Security Telecommunications Policy.”

B. The committee’s officers will have the following responsibilities:

1. The Chair will convene, preside at, and adjourn all meetings at his discretion, with the advance approval of the Executive Secretary. However, the Chair will also be obliged to adjourn any meeting the Executive Secretary advises him to adjourn when the Executive Secretary determines an adjournment to be in the public interest.

2. The Vice Chair will act as Chair in the absence of the Chair.

3. The Executive Secretary, who will be the Manager, National Communications System, will attend all meetings and will advise the Chair to adjourn, or will adjourn, any meeting when the Executive Secretary determines it is in the public interest. The Executive Secretary will invite agencies and officials from the Executive Branch to attend the meetings, as he deems appropriate. The Executive Secretary will prepare the minutes of each meeting, the accuracy of which the Chair will certify and that will at a minimum contain: a record of the membership present and the members of the public who participate in the meeting including the interests and affiliations they represent; a description of matters and materials discussed and the conclusions, if any,
reached; and the rationale for any recommendations made by members of the Committee. The Executive Secretary will also maintain copies of all reports which the Committee receives, issues, or approves.

C. The Committee may consult with interested parties, agencies, interagency committees, or groups of the United States Government and with private groups and individuals as the Committee decides is necessary or desirable.

D. The NSTAC will address all matters pertaining to National Security/Emergency Preparedness (NS/EP) Communications (Cyber and Telecommunications). The NSTAC will coordinate NS/EP communications interdependency issues with the National Infrastructure Advisory Council.

IV. Official to Whom the Committee Reports

A. The Committee will report in writing to the President of the United States through the Secretary of Homeland Security, in his capacity as Executive Agent for the National Communications System by Executive Order 13286, dated February 28, 2003.

B. The Committee, and any subcommittees established by the Committee, will work with the Office of the Manager, National Communications System, and appropriate representatives from National Communications System member organizations.

C. Any subcommittee established by the Committee will report to the Committee.

V. Estimated Costs and Staff Support

A. Members of the Committee will serve on it without any compensation for their work and in accordance with Section 3 of Executive Order 12382, dated September 13, 1982.

B. The estimated annual cost of operating the Committee and its subcommittees is $2.6 million, including travel expenses, per diem, contractor support, and staff support.

C. The Department of Homeland Security, in its capacity as Executive Agent for the National Communications System, will supply staff and support functions for the Committee. The estimated annual personnel staffing of such functions is 7.5 staff years, excluding contract support.

VI. Meetings and Termination

A. The Committee will meet approximately every 12 months in person and otherwise at the call of the Chair. Subcommittees will meet as necessary for their assigned responsibilities.

B. Under Executive Order 13385, dated September 29, 2005, effective September 30, 2005, the Committee will terminate on September 30, 2007, unless formally determined to be in the public interest to continue it for an additional period. A continuing need for the advice offered by this Committee is anticipated.

VII. Filing Date

December 14, 2005.
Bylaws of the President’s National Security Telecommunications Advisory Committee

Adopted: July 20, 1983
Amended: June 8, 1989
Amended: January 12, 1995
Amended: April 18, 2000
Amended: April 7, 2003

Article I Organization and Operation

Section 1 The National Security and Telecommunications Advisory Committee (NSTAC) shall be organized and operate in accordance with the Federal Advisory Committee Act, as amended (5 U.S.C. App. 2), Executive Order 12382, 13 September 1982, the Charter of the NSTAC, and these Bylaws.

Section 2 The provisions of the Federal Advisory Committee Act, as amended (5 U.S.C. App. 2), Executive Order No. 12382, 13 September 1982, and the Charter of the NSTAC shall govern in the event of any conflict between the provisions thereof and these Bylaws.

Section 3 The NSTAC shall be supported by an Industry Executive Subcommittee (IES). The IES is authorized to form subordinate Groups, titled Working Groups, Task Forces, or other appropriate title, necessary to carry out the direction provided by the NSTAC and to develop recommendations for the NSTAC in accord with the NSTAC Charter and the IES’s mission. The purpose of the IES is to advise the NSTAC on matters concerning procedures, plans, and policies for the telecommunications and information systems that support national security and emergency preparedness. The IES shall meet approximately one month before and one month after an NSTAC Meeting. At additional Working Sessions of the Subcommittee of the whole, the IES shall carry out its role as the NSTAC’s principal working body. The IES performs the following functions: identifies, plans, and defines NSTAC issues; strengthens industry and Government coordination; examines legislative and regulatory issues; oversees network security activities; provides feedback on the status of NSTAC recommendations; and directs and oversees the work of subordinate Groups. The IES shall report to the NSTAC and the subordinate Groups shall report to the IES.

Article II Membership

Section 1 The members of the NSTAC shall be appointed by the President in accordance with the provisions of Section 1(a) of Executive Order No. 12382, dated 13 September 1982.

Section 2 Each member of the NSTAC shall have the authority to appoint one member of the IES. The same individual may represent an industry entity on the IES and on one or more subordinate Groups. Except as provided in Article II, Section 5, the membership of the subordinate Groups shall consist of IES members elected by the IES for a term of two NSTAC cycles.

Section 3 Only NSTAC entities may be represented on the IES or subordinate Groups.

Section 4 Members of the NSTAC may not designate alternates. Members of the IES or any subordinate Group may designate an alternate. Such designation must be in writing with a copy provided to the Office of the Manager, National Communications System (OMNCS). An alternate shall have the privileges of a member.

Section 5 Consistent with any applicable security clearance requirements, any member of the IES or his or her duly designated alternate may be accompanied at any meeting by advisors. Any member or alternate may authorize an adviser to speak on behalf of the member or alternate.
Article III Chair and Voting

Section 1 The Chair and Vice Chair of the NSTAC shall be appointed by the President in accordance with the provisions of Section 1(b) of the Executive Order No. 12382, dated 13 September 1982.

Section 2 The Chair of the IES shall be the Deputy Manager of the National Communications System and not number in the count for a quorum nor vote on issues before the IES. At an IES Working Session, the IES member from the NSTAC Chair’s company shall chair the Working Session. The Chairs of subordinate Groups formed by the IES will be appointed by the IES Working Session Chair.

Section 3 A quorum of the Committee, the IES or subordinate Group is required to vote on issues being addressed. Except as set forth in Section 5, a quorum is constituted by the presence of more than half of the membership of the Committee, IES or subordinate Group.

Section 4 Only members of the NSTAC, the IES, or subordinate Group may vote. All issues will be decided, and recommendations or decisions made, by a majority vote of those members present at any NSTAC, IES, or subordinate Group meeting.

Section 5 Absent a request for a recorded and/or secret ballot vote, all votes shall be by either a show of hands or by voice vote. Any member may request a recorded and/or secret ballot vote at any time. With or without a quorum at a meeting, the Chair of the IES or subordinate Group may conduct a recorded vote by mail at any time absent objections of any member. In the case of a mail vote, a quorum is constituted by receipt of votes from more than half of the membership. A non-response from an IES or subordinate Group member will be considered a vote in the affirmative.

Article IV Minutes and Reports

Section 1 Committee records will be maintained as set forth in the Federal Advisory Committee Act, 5 U.S.C. App.2.

Section 2 A written summary will be prepared for each IES meeting and meeting of the IES Working Session. Summaries of the meetings will be prepared by the OMNCS and forwarded to members of the meeting body and other participating entities to review for accuracy and completeness.

Section 3 A consolidated annual report of results of all NSTAC activities shall be prepared and distributed to all members, and to any Federal Government entity upon request. Other reports shall be prepared as directed by the NSTAC.

Section 4 All reports except minority reports shall be prepared by the OMNCS and forwarded to the members for review and comment at least 15 days prior to final distribution.

Section 5 Minority reports may be prepared by any industry member(s) and forwarded to the OMNCS. The OMNCS will attach the minority report to the majority report.

Article V Issue Development

Section 1 Issues for consideration by the NSTAC may be suggested by any Government or industry entity, or any other person. The OMNCS will prepare suggested issues into issue papers for consideration by the IES.

Section 2 The IES will review all issue papers and recommend to the NSTAC their approval or disapproval for further consideration, or recommend such other action as is deemed necessary. For issues sent to a subordinate Group for study, analysis and/or the development of recommendations or options, the IES will provide guidance and direction as necessary.
Section 3 Studies, analyses, recommendations, or options developed by any subordinate Group shall be submitted to the IES, by report or briefing, for consideration prior to presentation or submission to the NSTAC.

Article VI Amendment of the Bylaws

Section 1 Amendment of the Bylaws may be proposed by any member of the NSTAC at any time. Such amendments may be adopted or dismissed only by majority vote of the NSTAC.

Section 2 An amendment to the Bylaws shall become effective immediately following its adoption.
Executive Order 12382—President’s National Security Telecommunications Advisory Committee

(Amended by Executive Order 12454 as of December 29, 1983, and Executive Order 13286 as of February 28, 2003)

By the authority vested in me as President by the Constitution of the United States of America, and in order to establish, in accordance with the provisions of the Federal Advisory Committee Act, as amended (5 U.S.C. App. I), an advisory committee on National Security Telecommunications, it is hereby ordered as follows:

Section 1. Establishment.

(a) There is established the President’s National Security Telecommunications Advisory Committee which shall be composed of no more than 30 members. These members shall have particular knowledge and expertise in the field of telecommunications and represent elements of the Nation’s telecommunications industry. Members of the Committee shall be appointed by the President.

(b) The President shall annually designate a Chairman and a Vice Chairman from among the members of the Committee.

(c) To assist the Committee in carrying out its functions, the Committee may establish appropriate subcommittees or working groups composed, in whole or in part, of individuals who are not members of the Committee.

Section 2. Functions.

(a) The Committee shall provide to the President through the Secretary of Homeland Security, among other things, information and advice from the perspective of the telecommunications industry with respect to the implementation of Presidential Directive 53 (PD/NSC-53), National Security Telecommunications Policy.

(b) The Committee shall provide information and advice to the President through the Secretary of Homeland Security regarding the feasibility of implementing specific measures to improve the telecommunications aspects of our national security posture.

(c) The Committee shall provide technical information and advice in the identification and solution of problems which the Committee considers will affect national security telecommunications capability.

(d) In the performance of its advisory duties, the Committee shall conduct reviews and assessments of the effectiveness of the implementation of Presidential Directive/National Security Council 53 (PD/NSC-53), National Security Telecommunications Policy.

(e) The Committee shall periodically report on matters in this Section to the President and to the Secretary of Homeland Security in his capacity as Executive Agent for the National Communications System.

Section 3. Administration.

(a) The heads of Executive agencies shall, to the extent permitted by law, provide the Committee such information with respect to national security telecommunications matters as it may require for the purpose of carrying out its functions. Information supplied to the Committee shall not, to the extent permitted by law, be available for public inspection.

(b) Members of the Committee shall serve without any compensation for their work on the Committee. However, to the extent permitted by law, they shall be entitled to travel expenses, including per diem in lieu of subsistence.
(c) Any expenses of the Committee shall, to the extent permitted by law, be paid from funds available to the Secretary of Homeland Security.

Section 4. General.

(a) Notwithstanding any other Executive Order, the functions of the President under the Federal Advisory Committee Act, as amended (5 U.S.C.App. I), except that of reporting annually to the Congress, which are applicable to the Committee, shall be performed by the Secretary of Homeland Security, in accord with guidelines and procedures established by the Administrator of General Services.

(b) In accordance with the Federal Advisory Committee Act, as amended, the Committee shall terminate on December 31, 1982, unless sooner extended.
June 1, 1983

Lt. Gen. William J. Hilsman
Manager, National Communications System
Washington, D.C. 20305

Dear General Hilsman:

In response to your May 2, 1983, letter to Ronald G. Carr, the Antitrust Division has reviewed the April 18, 1983, draft report of the NSTAC Emergency Response Procedures Working Group on the establishment of a National Coordinating Mechanism. In particular, the Division focused on the proposed functions of the National Coordinating Mechanism (NCM) as set out in Section 6, “Conclusions,” of the draft report and Annex B.

The views expressed in this letter are preliminary and respond to your suggestion that we provide general guidance to the Funding and Regulatory Working Group prior its June 2, 1983 meeting.

In summary, we believe the functions of a National Coordinating Mechanism, if carried out along the lines suggested in Chapter 6 and Annex B, pose no significant competitive problems that would rise to the level of a possible Antitrust violation if such activities were carried out in a manner designed to minimize any anticompetitive potential and if the appropriate government agencies retain the responsibility for necessary procurement and regulatory decisionmaking.

As we understand it, the NCM would have four organizational components. Overall policy would be set by a General Forum, “an industry-wide organization with widespread membership” which would meet semi-annually to provide the opportunity for members of the communications industry to discuss National Security-Emergency Preparedness (NS/EP) needs. Subordinate to the General Forum would be two standing committees: (1) the Technical Planning Committee, which would focus on matters involving technical interoperability, (2) the Operations Planning and Policies Committee, which would focus on those involving operating methods and procedures relating to NS/EP. A National Coordinating Center (NCC) would be responsible for day to day planning activities and for responding to NS/EP requirements as they occur. The NCC would consist of an operations center located at a government facility and be staffed with representatives of the National Communications System, and “selected representatives of the industry.” Carriers not physically present would remain in electronic contact with the NCC. Lastly, a Secretariat would be responsible for administrative coordination and support.

According to Appendix B, the NCM would appear to have four types of functions. The first, would be to provide a coordination point for dealing with communications emergencies, including service disruptions. This activity includes development of the “watch center” operations of the NCC, technical analysis/damage assessments of service disruptions, and coordination or direction of prompt restoration of telecommunication services. (Items 1, 2, 4, 7.) The second basic function would be to coordinate and assist in the provision of time sensitive NS/EP service requests. (Items 8, 11.) The third category is a broader planning function in which the NCM would assist in the development of technical standards and network planning to meet NS/EP needs and to assist the overall development of each carrier’s network so as to insure that NS/EP needs are...
taken into consideration. (Items 3, 9, 10.) Finally, the NCM would provide a mechanism to supply the government and, potentially, other carriers with critical information about resources available to meet NS/EP needs or emergency requirements. (Items 5, 6.)

The following discussion of these functions, including the issue of the appropriate scope industry membership in the NCM and its component activities, is based on the descriptions set out in the draft report.

From the description, it would appear that the NCM, although sponsored and supported by the government, would largely function as a joint activity among potentially competing members of the telecommunications industry. The antitrust laws do not prohibit collective activity between competing members of an industry simply because they are competitors. Instead, the question asked by the antitrust laws is whether or not the collective activity at issue has the probable effect of lessening competition in the markets at issue. In the case of the NCM, the proposed essential elements recommended by the Working Group do not appear to do so. Rather, they would enable the industry to provide collectively that which each member of the industry could not provide individually, i.e., a nationwide, interoperable system of independent carrier networks in which the resources of all are available to meet this Nation’s NS/EP needs. Consequently, the key focus of any antitrust and competitive analysis is on the methods and procedures by which the essential objectives are implemented.

1. Membership. Under the Sherman Act, if joint facilities established by competing firms become essential to participating effectively in markets served by venture's participants, participation in the activity on reasonable terms by all competing enterprises may be mandated. To the extent that participation in the NCM would confer a competitive advantage therefore, exclusion by industry members of competing firms might be of concern. As we understand the proposal, however, the scope of the NCM and its components would be established by the Government to meet public NS/EP needs, not private interests. In such a circumstance, the decision to limit membership in a particular activity should be made by responsible government agencies, rather than by industry participants, themselves, limiting possible antitrust concerns. In turn, the criteria utilized by the sponsoring government agencies should be designed to promote as broad as possible participation in the group, with membership in any activity restricted only to the minimum extent necessary to achieve the objectives of such an activity, e.g., limiting physical presence at an NCC to numbers that prevent the NCC from becoming an operationally unmanageable undertaking. In this regard, we note that the government, as “the purchaser” of NS/EP services should have every incentive to maximize industry participation, and limit participation, if at all, only to ensure that the benefits of the NCM are maximized.

2. Coordination of Service Disruptions and Similar Emergencies. As we understand it, the goal of this function is to ensure that existing communications requirements can be maintained in the face of disruption of the network of one or more carriers as a result of, e.g., equipment failure, natural disasters, sabotage or war. The goal of the NCM in this activity would not be to process service orders to meet added requirements, but to assure that services already ordered by government agencies and the private sector can be provided in the face of adversity. On the facts as set out above, there would appear to be few, if any, competitive or antitrust issues at stake in this type of activity, to the extent the actual restoration and back-up processes do not have the effect of disadvantaging any particular carrier. Consequently, the procedures involved should minimize any possibility that the services of any carrier will be unreasonably excluded from the backup and restoration process.

3. Coordination of Additional NS/EP Requirements. Under this function, the NCM would assist the government in obtaining a quick, coordinated industry response to time-sensitive NS/EP requirements, such as the provision of additional circuits and equipment to areas hit by a disaster, or for Presidential travel or military mobilization requirements. As we understand it, this activity is different from that just described because it
would result in new government orders for additional services or equipment. Here, the competitive and antitrust risks are greater in that, if appropriate safeguards are not adopted, the NCM could theoretically serve as a mechanism for allocating government orders among competing firms to the detriment of the government’s interest. Such an allocation could result, if, for example, firms represented at the NCC decided among themselves who would bid for a particular circuit order when several of them could do so, or if failure to have a representative at the NCC would mean that a particular firm, as a result of procedures agreed on by the carriers present at the NCC, would not have the opportunity to bid on the circuit request.

These theoretically possible competitive problems could be minimized to the extent that the relevant government agencies make the procurement decisions and establish the appropriate bidding processes for emergency telecommunications, with the NCM merely supporting those processes and providing a mechanism coordinating an end-to-end response once the government’s procurement decisions were made. What should be avoided, therefore, is the adoption by participating carriers, themselves, of practices that would undercut the ability of government procurement officers to obtain such benefits of competition as procurement regulations envisioned in the circumstances at issue. So long as the NCM merely facilitates actions desired by government agencies in their capacity as a purchaser of communications services, antitrust concerns would be minimized.

4. Industry Standard-Setting and Planning. Standard setting to promote interoperability is widespread across a broad spectrum of American commercial activity, including the communications industry. Under the antitrust laws, such standard-setting processes pose few problems if access to the standard setting bodies are available to competing industry members whose products and services are affected by the standard-setting process and to the extent that reasonable procedures are utilized to assure that the competing firms will have the opportunity to present their views before such standards are collectively adopted.

Nevertheless, both competitive and antitrust issues may be raised to the extent that such standard setting becomes a vehicle to place the products or services of a firm at a competitive disadvantage. Where such actions are taken, it can be alleged that the participants in the standard setting process undertook collective action to eliminate a competitor from the market. Such actions should not give rise to antitrust liability to the extent that the actions in question represented reasoned and reasonable choices and were not undertaken for an exclusionary purpose. In some cases, however, the adoption of standards by collective industry action, e.g., for interoperability or interconnection, may result in a choice that will confer relatively greater competitive benefits on one firm or technology. Consequently, competitive risks would be minimized to the extent that the standards adopted responded to specific NS/EP objectives in a manner that maximized carrier flexibility to meet those standards.

5. Information Sharing. Finally, the proposed NCM envisions that a limited amount of carrier information concerning available NS/EP resources will be provided to the NCC. It is also envisioned that a mechanism will be adopted by which individual carrier actions, such as the introduction of new services or the planning of facility routes, may be scrutinized so that the NS/EP consequences of these carrier activities can be reviewed to enhance NS/EP benefits. The fundamental competitive and antitrust concerns regarding such information plans are to ensure that proprietary carrier information is not involuntarily disclosed to competitors, and that voluntary sharing arrangements do not have the effect of reducing competition among carriers in the introduction of new services and the construction of new facilities. Thus, procedures should be adopted to foreclose potentially anticompetitive information disclosures.

For example, it would appear preferable for each carrier to maintain its own inventory of spare circuits, etc., rather than to create a centralized data base of such information, unless access to such a data base was strictly controlled and limited to the carrier concerned or to government employees. Of course, these concerns are
minimized with respect to information that relates not to the overall commercial capabilities of each carrier, but to purely emergency resources, *e.g.*, mobile facilities or the status of equipment dedicated to NS/EP requirements. In this regard, the operating environment of the NCC should be designed to minimize opportunities for informal and unauthorized access by employees of one carrier to the proprietary information of other carriers.

In the same fashion, the opportunities for disclosure of proprietary information to competing carriers in the process of planning new facilities should also be minimized. For example, it would appear prudent for carriers to obtain information from government employees as to appropriate routings for facilities and to base their actions independently upon such recommendations, rather than for competing carriers to agree on facility routings, particularly where the effect would be to require advance disclosure of construction plans to competitors.

In sum, we believe that the proposals outlined in the draft Working Group report can form an appropriate basis for a National Coordinating Mechanism that will meet government NS/EP requirements while minimizing competitive antitrust risks. The Antitrust Division will continue to work closely with your staff, the NSTAC, and other federal agencies to assure that the NCM is implemented in a manner consistent with both our agencies’ legal and policy concerns.

Sincerely,

William F. Baxter
Assistant Attorney General
Antitrust Division

APPENDIX A 2008-2009 NSTAC Issue Review

The President’s National Security Telecommunications Advisory Committee

A-14
The President’s National Security Telecommunications Advisory Committee Membership (as of July 8, 2009)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Edward A. Mueller</td>
<td>NSTAC Chair, Chairman and Chief Executive Officer, Qwest Communications International, Incorporated</td>
</tr>
<tr>
<td>Mr. John T. Stankey</td>
<td>NSTAC Vice Chair, President and Chief Executive Officer, AT&T Operations, Incorporated</td>
</tr>
<tr>
<td>Mr. James F. Albaugh</td>
<td>President and Chief Executive Officer, Boeing Integrated Defense Systems, The Boeing Company</td>
</tr>
<tr>
<td>Mr. Gregory Q. Brown</td>
<td>President and Chief Executive Officer, Motorola, Incorporated</td>
</tr>
<tr>
<td>Mr. Daniel J. Carroll, Jr.</td>
<td>Board of Directors Member, Telcordia Technologies, Incorporated</td>
</tr>
<tr>
<td>Mr. Kenneth C. Dahlberg</td>
<td>Chairman and Chief Executive Officer, Science Applications International Corporation</td>
</tr>
<tr>
<td>Mr. Marc Gordon</td>
<td>Chief Technology Officer, Bank of America Corporation</td>
</tr>
<tr>
<td>Mr. Arthur E. Johnson</td>
<td>Senior Vice President, Corporate Strategic Development, Lockheed Martin Corporation</td>
</tr>
<tr>
<td>Mr. Kevin R. Johnson</td>
<td>Chief Executive Officer, Juniper Networks, Incorporated</td>
</tr>
<tr>
<td>Mr. Clayton M. Jones</td>
<td>Chairman, President, and Chief Executive Officer, Rockwell Collins, Incorporated</td>
</tr>
<tr>
<td>Mr. Howard L. Lance</td>
<td>Chairman, President, and Chief Executive Officer, Harris Corporation</td>
</tr>
<tr>
<td>Mr. Michael W. Laphen</td>
<td>Chairman, President, and Chief Executive Officer, Computer Sciences Corporation</td>
</tr>
<tr>
<td>Mr. Thomas J. Lynch</td>
<td>Chief Executive Officer, Tyco Electronics Ltd.</td>
</tr>
<tr>
<td>Mr. Craig O. McCaw</td>
<td>Chairman, Teledesic Corporation</td>
</tr>
<tr>
<td>Mr. Walter B. McCormick, Jr.</td>
<td>President and Chief Executive Officer, United States Telecom Association</td>
</tr>
<tr>
<td>Mr. Kyle E. McSlarrow</td>
<td>President and Chief Executive Officer, National Cable and Telecommunications Association</td>
</tr>
<tr>
<td>Mr. Craig J. Mundie</td>
<td>Chief Research and Strategy Officer, Microsoft Corporation</td>
</tr>
<tr>
<td>Ms. Kay Sears</td>
<td>President, Intelsat General Corporation</td>
</tr>
<tr>
<td>Mr. Ivan D. Seidenberg</td>
<td>Chairman and Chief Executive Officer, Verizon Communications, Incorporated</td>
</tr>
<tr>
<td>Mr. William H. Swanson</td>
<td>Chairman and Chief Executive Officer, Raytheon Company</td>
</tr>
<tr>
<td>Mr. Mike S. Zafirovski</td>
<td>President and Chief Executive Officer, Nortel Networks Corporation</td>
</tr>
</tbody>
</table>

The President’s National Security Telecommunications Advisory Committee (NSTAC) is an advisory committee established by the President of the United States to provide advice and recommendations on telecommunications policy matters related to national security and emergency preparedness.
Executive Report on the 2009 Meeting of the President’s National Security Telecommunications Advisory Committee – May 21, 2009

The President’s National Security Telecommunications Advisory Committee (NSTAC) met on May 21, 2009, at the U.S. Chamber of Commerce in Washington, D.C. The meeting focused on protecting public and private sector activities in cyberspace, promoting identity management strategy, and securing satellite communications against malicious actors. The NSTAC Principals met with Secretary Janet Napolitano, Department of Homeland Security (DHS); Mr. David Furth, Acting Director, Public Safety and Homeland Security Bureau (PSHSB), Federal Communications Commission (FCC); and Ms. Anna Gomez, Deputy Assistant Secretary for Communications and Information and Deputy Administrator, National Telecommunications and Information Administration (NTIA); and other senior Government officials. The Principals reviewed NSTAC activities over the past cycle during the Open Session. During the Closed Session, the NSTAC Principals engaged in discussion with Mr. Joseph Rouge, Director, National Security Space Office (NSSO), Mr. Randy Beardsworth, Partner, Catalyst Partners, and Mr. Philip Reitinger, Deputy Under Secretary for the National Protection and Programs; and a number of senior Administration officials. This Executive Report summarizes those presentations and deliberations. Also attached are the recommendations to the President from 2008-2009 NSTAC cycle (Attachment 1) and an attendance list of NSTAC Principals (Attachment 2).

2009 NSTAC Open Session

Call to Order/Opening Remarks.

Mr. Edward Mueller, Qwest Communications International, Inc., and the President’s NSTAC Chair, called the 2009 NSTAC Meeting Open Session to order on May 21, 2009, at 2:30 p.m. at the U.S. Chamber of Commerce in Washington, D.C. Mr. Mueller introduced himself and welcomed attendees to the meeting. Mr. Mueller introduced Mr. John Stankey, AT&T, Inc. and the NSTAC Vice Chair. Mr. Mueller remarked that serving as the NSTAC Chair over the past year has been a great pleasure and he is looking forward to future opportunities to work with NSTAC members in providing national security and emergency preparedness (NS/EP) advice to the President. He noted that it was a great honor to meet with President Barack Obama that morning and to hear the President’s views on the future work of the NSTAC and his appreciation for their work.

Mr. Mueller recognized that the NSTAC has produced a remarkable body of work in its 27-year history. He further mentioned that the Committee has examined several significant issues over the last cycle alone, including identity management, cybersecurity collaboration, Internet protocol (IP)-based communications, physical assurance of the core network, and satellite security.

Mr. Mueller noted that the NSTAC Principals reviewed and approved the Addendum to the NSTAC Report on the Physical Assurance of the Core and the NSTAC Response to the Sixty-Day Cyber Study Group at its February 2009 and March 2009 conference call meetings. He informed members that the Open Session will serve as an opportunity to hear stakeholder remarks, discuss issues related to satellite security, hear the results of President Obama’s first Presidential Study Directive, and discuss the 2009-2010 NSTAC Work Plan. Mr. Mueller then recognized and welcomed the speakers participating in the Open Session:

► Secretary Janet Napolitano;

► Mr. David Furth; and

► Ms. Anna Gomez.
Mr. Mueller also extended a welcome and appreciation to the senior Government officials and industry partners who took the time to attend the NSTAC Meeting. He welcomed:

- Mr. John Brennan, Deputy National Security Advisor, National Security Council (NSC);
- Ms. Melissa Hathaway, Senior Advisor, NSC;
- Mr. Jim Cummings, Director, Homeland Defense, NSC;
- Mr. Tom Donahue, Director of Cyber Policy, Executive Office of the President (EOP);
- Mr. John Holdren, Director, Office of Science and Technology Policy (OSTP); and
- Mr. James Kohlenberger, OSTP.

Mr. Mueller also welcomed attendees from the DHS, including:

- Mr. Philip Reitinger;
- Mr. James Snyder, Acting Assistant Secretary for Infrastructure Protection;
- Mr. Craig Fugate, Administrator, Federal Emergency Management Agency (FEMA).

Additionally, Mr. Mueller welcomed Department of Defense (DOD) attendees, including:

- Lt. General Carroll Pollet, Director, Defense Information Systems Agency;
- Mr. Robert Lentz, Director for Information Assurance; and
- Mr. Joseph Rouge.

Mr. Mueller welcomed participants from the Office of Management and Budget (OMB), including:

- Mr. Mike Howell, Deputy Administrator for E-Government and Information Technology; and
- Ms. Carol Bales; Office of E-Government and Information Technology.

Finally, Mr. Mueller welcomed Mr. Bob Leafloor, Industry Canada.

Remarks: Secretary Janet Napolitano.

Secretary Napolitano thanked Mr. Mueller for providing her introduction. She stated her hope that the day’s meetings would be productive, as the topics the NSTAC analyzes are critical to the success of the Nation’s security efforts. Secretary Napolitano remarked that although this is her first meeting with the NSTAC, she had heard about NSTAC activities for some time and appreciates the work the Committee has conducted with regard to NS/EP communications.

Secretary Napolitano commented that the nature of the topics that the NSTAC analyzes makes the Committee essential to protection of the Nation. She called for a real-time method to unite efforts between the Government and the NSTAC.

Secretary Napolitano noted that the NSTAC recently focused on the physical assurance of the core network, Internet protocol-based communications, next generation networks, cybersecurity collaboration, and identity management. She highlighted the intersection with DHS areas of focus, such as collaboration with industry and identity management.

Secretary Napolitano further stated that she is pleased that the NSTAC is currently working to update the findings of the 2004 Satellite Task Force Report, at the request of the NSSO.

Secretary Napolitano affirmed that DHS actively engaged in the Cyberspace Policy Review, which was commissioned by the President and led by Ms. Hathaway. She thanked the NSTAC for its contribution to the review and expressed her interest in working with the NSTAC, the President, and others to implement the necessary actions to ensure cybersecurity. The Secretary believes cybersecurity is
an important area in which systems, protections, and public-private collaborations must become more robust and that Government and industry must work together proactively to mitigate potential cyber attacks.

Secretary Napolitano recognized that achieving full communications interoperability is difficult, but observed that with current and available technologies the solution should be simpler. She discussed the high importance that DHS has placed on the issue of interoperability. The issue is particularly critical for first responders, as a terrorist attack or natural disaster could hinder or shut down standard communications equipment. The Secretary personally experienced difficulty with interoperability during the February 2009 Kentucky ice storms. The heavy freeze prevented her use of the State's telecommunications infrastructure. Approximately 50 percent of Kentucky residents lost power and needed generators until power could be restored. During this emergency scenario, the Secretary communicated with the Kentucky Governor and inquired about the necessary size of the generators residents needed to supply power on an emergency basis. Even the Governor of Kentucky could not request appropriate equipment because he did not know the necessary generator size for his own needs. As a result, he could not contact the towns affected because telephone communications towers had been destroyed under the weight of the ice. Emergency response leaders had to use ham radio to inform the Government of western Kentucky's needs. The Secretary reported that DHS and FEMA were able to quickly transfer mobile communications trucks to the affected areas over a 24-hour period. She highlighted this situation as an example of the importance of interoperability and why the Government must prioritize this issue.

Secretary Napolitano informed the NSTAC that she is looking forward to working with the Committee in the future. She expressed that she is particularly interested in how the NSTAC's partnership can be conducted real-time and in-person rather than through occasional conference calls and meetings. She challenged the members to consider how a real-time partnership would emerge due to the urgent nature of issues that both the NSTAC and DHS face, and welcomed any thoughts from NSTAC members as they address these critical issues.

Remarks: Mr. David Furth.

Mr. Furth told the NSTAC that he was pleased to update the Principals on current and future PSHSB programs on behalf of Acting Commissioner Michael Copps, FCC. He informed participants that the mission of the PSHSB is to foster reliable and resilient public safety communications, support emergency preparedness, and act as a repository of homeland security and public safety information.

Mr. Furth stated that the PSHSB oversees 911 and Enhanced 911 (E911) operations. With the increase of wireless telephones and IP-based technologies, such as Voice over IP, the PSHSB is working to ensure that E911 enables public safety officials to quickly and accurately locate 911 callers. The capability to identify a caller’s location is essential, and wireless and IP-based devices are not linked to a specific location like a traditional hardwire landline. Over the past year, the FCC has issued several reports and requests for comment to assist in the development of more refined location information technologies and standards. Mr. Furth remarked that the PSHSB is also working with the NTIA and the Department of Transportation (DOT) to review and implement the requirements of Public Law (P.L.) 110-283, the *New and Emerging Technologies 911 Improvement Act of 2008*.

Mr. Furth told members that the PSHSB continues to examine interoperable communications issues and is searching for additional spectrum bands to support new interoperable communications programs. He said that the digital television transition, scheduled for June 12, 2009, will open several new narrow spectrum bands for public safety use. He also noted that the FCC attempted to auction two adjacent bands in the 700-megahertz spectrum in 2008, yet no bidder met the minimum bid requirements. He said that the FCC is exploring additional options to release the spectrum. In collaboration with the NTIA, the FCC is also jointly administering the Public Safety and Interoperable Communications (PSIC) Grant Program.
to help States achieve interoperability goals. Furthermore, in 2003, the FCC developed the Network Reliability and Interoperability Council (NRIC) to make recommendations to the FCC and to industry on topics concerning public telecommunications networks. The FCC is currently re-chartering the Communications Security, Reliability, and Interoperability Council to replace the NRIC and the Security and Reliability Council, and will begin selecting members later this year.

Mr. Furth remarked that nationwide deployment of broadband technologies is a significant goal of the Obama Administration. P.L. 111-05, the American Recovery and Reinvestment Act, allocated funding for the FCC to help establish a nationwide broadband network. In April 2009, the FCC issued a notice requesting public comments on how to best meet the requirements of the Act.

Mr. Furth told members that the PSHSB also serves as a repository for critical infrastructure outage information. He said that the FCC continues to collaborate with industry through PSHSB’s Disaster Information Reporting System (DIRS). DIRS was first launched in September 2007 in partnership with the National Communications System (NCS). It is a voluntary, Web-based system that communications companies can use to report outages or damages to communications infrastructure and share situational awareness information during emergencies. The PSHSB deployed the system during both the 2007 and 2008 hurricane seasons as well as in response to the 2009 Kentucky ice storms. In addition to DIRS, the FCC is collaborating with FEMA on Project Roll Call to help determine where communications infrastructure outages have occurred and what necessary backup equipment is needed during disaster response.

Mr. Furth said that the FCC continues to work with a host of industry and Government partners to fulfill its public safety mission. In addition to the NTIA, DOT, NCS, and FEMA, the FCC is coordinating with the Department of Health and Human Services to improve hospital communications during emergencies and also serves as a member of the NCS Committee of Principals. He thanked the NSTAC Principals again for their time and said that he looks forward to working with them during the Obama Administration’s term.

Remarks: Ms. Anna Gomez.

Ms. Gomez thanked the NSTAC for the opportunity to speak and commented that her experience with the telecommunications industry and the FCC has provided her with the first-hand experience necessary to understand the partnership. She acknowledged the NSTAC and Industry Executive Subcommittee (IES) representatives for their significant contributions to NS/EP for almost 30 years.

Ms. Gomez noted that NTIA is involved in many cooperative efforts with a wide range of departments and agencies, and that she anticipates Mr. Larry Strickling will soon be confirmed as the head of NTIA. She discussed the activities undertaken by President Obama’s Administration, including the identification of broadband deployment as a main goal of the 2009 American Recovery and Reinvestment Act. The goal of the broadband program is to allow all citizens to have access to broadband. President Obama’s broadband initiative calls for great broadband penetration and will provide $4.7 billion to deploy and expand broadband access, $2.5 billion to address sustainable broadband adoption issues, and $300 million for broadband inventory mapping. She remarked that the Department of Commerce, United States Department of Agriculture (USDA), and the FCC held a public meeting where USDA and NTIA opened the floor for public comment about how grantees should be held accountable for any broadband stimulus funding they receive, and solicited joint requests for information regarding the deployment of broadband funds. The program includes three rounds of grant funding that will be allocated by September 2010.

Ms. Gomez also discussed spectrum issues and stated that wireless service will be critical to America’s NS/EP posture and is the key to affordable broadband for all Americans. She also commented that the PSIC Grant Program delivers meaningful and measurable improvements and is intended to implement, or
reestablish, solutions in the event of a failure. The public safety grant program provides funding for interoperable and deployable communications for all States and territories. She also informed participants that the PSIC represents the largest infusion of money dedicated to State-level deployable communications solutions.

Ms. Gomez reported that the NTIA, Office of the Chief Information Officer, International Trade Administrations, and OSTP all reviewed the President’s *Cyberspace Policy Review*, and that NTIA is looking to expand its role in cybersecurity in coordination with Government, industry, and academic experts. She highlighted the need to develop and support cybersecurity throughout the entire workforce in an effort to continue cybersecurity development nationwide. She emphasized the United States Government’s commitment to preserving the security of its internal domain. She informed attendees that in November 2008, consensus emerged in support of the domain name addressing system for timely deployment and for collaboration with the Internet technical community. She also commented that the JPA (Joint Project Agreement) will expire soon and that the NTIA published a notice of inquiry that outlines the memorandum of understanding between the Department of Commerce and the Internet Corporation for Assigned Names and Numbers. In closing, Ms. Gomez thanked the Principals for the opportunity to address the NSTAC.

Ongoing NSTAC Work.

Mr. Mueller reviewed the NSTAC’s activities over the past cycle and discussed ongoing work efforts. At the beginning of the cycle, four task forces were active: (1) the Global Infrastructure Resiliency Task Force (GIRTIF); (2) the Legislative and Regulatory Task Force (LRTF); (3) the NSTAC Outreach Task Force (NOTF); and (4) the Research and Development Task Force (RDTF).

During the course of the work cycle, the NSTAC established several new efforts, including: (1) the Core Assurance Task Force (CATF); (2) the Next Generation Networks Implementation Annex Working Group (NGN IAWG); (3) the Identity Issues Task Force (IdTiTF); (4) the Cybersecurity Collaboration Task Force (CCTF); and (5) the Satellite Task Force (STF). Over the course of the cycle, the CATF, GIRTIF, and the NGN IAWG each completed their work and sunset as outlined in their work plans. Mr. Mueller remarked that the CCTF and the IdTiTF have completed draft reports which will be discussed as the next agenda items.

Before proceeding, Mr. Mueller thanked the NSTAC Principals who served as champions on the issues the NSTAC examined during the cycle, as well as those who will be supporting key NSTAC work efforts in the coming year.

Cybersecurity Collaboration Task Force.

Mr. Kevin Johnson, Juniper Networks, Inc., presented the draft *NSTAC Report to the President on Cybersecurity Collaboration* for Principal consideration. Before briefing the report’s findings, he thanked Mr. Arthur Johnson, Lockheed Martin Corporation, and General Charles Croom (Ret.), Lockheed Martin and CCTF Vice Chair, for their assistance in this effort.

Mr. Johnson informed members that the NSTAC established the CCTF during the November 2008 Principals’ Conference Call following a rigorous scoping effort. The NSTAC determined that the task force would examine the requirements and challenges of developing a joint public-private, 24/7, operational capability focused on the prevention, detection, mitigation, and response to cyber threats and incidents of national significance. During its examination, the CCTF met with subject matter experts from both industry and Government and sought to identify any issues that may impede the development of such a capability. Mr. Johnson also remarked that CCTF members sought to ensure that this capability enhances, but does not duplicate, other cybersecurity and critical infrastructure protection-related initiatives currently in progress. To drive the development of the report, the task force established several small writing groups.

Mr. Johnson reported that the task force found that a joint cyber collaboration center does not exist, though the NSTAC has recommended this type of capability in several past reports. In the report, the NSTAC recommends that the President direct the establishment of a joint, integrated public-private, 24/7 operational
cyber incident detection, prevention, mitigation, and response capability to address cyber incidents of national consequence. This recommendation proposes establishing a Government sponsored Joint Coordinating Center (JCC) with public and private sector representatives from various critical infrastructures and key resources sectors following the aggressive, phased approach described in the report.

He outlined that the JCC would initially build upon the current coordination/collaboration capabilities of the National Coordinating Center and the United States Computer Emergency Readiness Team, and incorporate other existing cyber incident monitoring and response public-private entities. Its primary mission would focus on robust information sharing for developing and sharing cyber situational awareness and would institutionalize the time-sensitive processes and procedures to detect, prevent, mitigate, and respond to cyber incidents.

Mr. Johnson thanked Mr. Bob Dix, Juniper Networks and CCTF Chair, for his dedication to the effort and offered to respond to member questions or comments. The Principals deliberated the recommendation in the report, then voted on, and unanimously approved NSTAC Report to the President on Cybersecurity Collaboration.

Identity Issues Task Force.

Mr. Michael Zafirovski, Nortel Networks Corporation, thanked Mr. Mueller for the opportunity to speak regarding the work of the IdITF.

The NSTAC established the IdITF in November 2008 at the direction of the EOP after the Homeland Security Council (HSC) requested that the NSTAC undertake three tasks. The first task was to develop an industry position on the practicality of an Identity Management vision and strategy. This strategy would provide a framework for citizens to protect themselves, their personal information, and their privacy in the event of an attack on the network. Mr. Zafirovski noted that this strategy will also serve the needs of the NS/EP community. Second, the EOP requested that the NSTAC determine if such a vision could help the Federal Government serve as a catalyst for the adoption of a widespread comprehensive, interoperable Identity Management strategy. Finally, the EOP requested that the NSTAC identify possible first steps the Federal Government could take to begin addressing problems associated with Identity Management and attribution of malicious activity.

Mr. Zafirovski explained that the IdITF benefited from the participation of many NSTAC member companies and Identity Management subject matter experts from both Government and industry. The task force decided on four concurrent actions to pursue. First, was to provide strategy and policy suggestions for the development of a national, comprehensive Identity Management vision and national strategy. Second, was to identify the requirements of Identity Management stakeholders, including the private sector, Government, civil society, and individual end-users. Third, was to provide recommendations for the U.S. Government to serve as a catalyst for the development and adoption of a comprehensive Identity Management vision and strategy. Finally, the task force would determine impediments for implementing a national, comprehensive Identity Management strategy.

Mr. Zafirovski commented that to ensure a timely response to the HSC, the task force did not address technical or architectural solutions, but rather focused on the high-level strategic and policy aspects of Identity Management. However, the NSTAC recognizes the importance of technical solutions and interoperability. Therefore, Mr. Zafirovski underscored that the NSTAC recommends further study of Identity Management architectures.

The NSTAC appreciates the unique requirements of all Identity Management stakeholders, and understands that a comprehensive, national Identity Management strategy must offer the private sector and the public a trusted, easy-to-use, economically viable, and choice-based process for protecting privacy and security. This process must also enable end users to determine the degree of authentication and choose whether or not to utilize the process on a case-by-case basis.
The IdITF reviewed other recent and ongoing Identity Management efforts to ensure they leveraged the breadth of work conducted in this area. Some specific efforts and publications referenced include the **NSTAC Response to the Sixty-Day Cyber Study Group** as part of the **Cyberspace Policy Review**, the **2008 NSTAC Research and Development Exchange Workshop Proceedings**, the National Science and Technology Center (NSTC) Subcommittee on Biometrics and Identity Management’s **Identity Management Task Force Report 2008**, and the Center for Strategic and International Studies Report, **Securing Cyberspace for the 44th Presidency**. The IdITF also received multiple briefings from members of the Executive Branch on the progress the Federal Government has made to incorporate Identity Management within Government information technology systems.

Mr. Zafirovski explained that over the course of several months of study, the IdITF identified a series of findings, conclusions, and recommendations for consideration by the White House. The complete draft Report has been forwarded to all NSTAC Principals for their review and consideration. Mr. Zafirovski thanked Dr. Jack Edwards, Nortel Networks, and Mr. Guy Copeland, CSC, the IdITF Co-Chairs, for their dedicated support to the IdITF and for their excellent coordination efforts during the creation of the Report. Mr. Zafirovski provided a brief overview of the recommendations to the President and noted, due to the recent Presidential transition, the White House has a unique opportunity to influence the Identity Management space:

- Demonstrate national leadership in Identity Management to positively influence the national culture, attitude, and opinion towards Identity Management;

- Charter a national Identity Management office under specifically appointed and dedicated leadership in the EOP; and

- Direct this newly created office to develop a coordinated programmatic agenda to implement a comprehensive Identity Management vision and strategy to address, at a minimum, four component areas, specifically: Government organization and coordination, public-private Identity Management programs, policy and legislative coordination, and national privacy and civil liberties culture.

At the conclusion of his update, Mr. Zafirovski recommended that the NSTAC approve the **Report to the President on Identity Management Strategy**. He thanked Mr. Mueller and the NSTAC for their time.

The Principals deliberated the recommendations in the report and voted to unanimously approve the **NSTAC Report to the President on Identity Management Strategy**. Mr. Mueller thanked the task force for their efforts and thanked Dr. Edwards for his long history of dedicated support to the NSTAC and wished him luck on his future endeavors as he concludes his time with the NSTAC.

Satellite Task Force.

Ms. Kay Sears, Intelsat General, reported that since the 2004 publication of the first NSTAC **Satellite Task Force Report**, the DOD has become increasingly reliant on commercial satellite systems for NS/EP communications. Today, over 80 percent of the communications in Afghanistan and Iraq take place over commercial communications satellites. The 2004 Report focused on the strengths and vulnerabilities of commercial satellite communications networks used for NS/EP communications. Ms. Sears remarked that as a result of the 2004 Report, the DOD created a Mission Assurance Working Group (MAWG) to work with commercial satellite operators to develop the policies, practices, and procedures necessary to ensure that commercial communications meet the level of security required by specific mission categories.

The 2004 **Satellite Task Force Report** is now five years old and the NSSO requested that the NSTAC review and update the report with an emphasis on satellite network cyber systems. Ms. Sears commented on the timeliness of the examination since over the last decade global satellite operators have matured from the sellers of bandwidth to the managers of complex global networks. Further, the largest satellite companies—in their terrestrial elements—operate
essentially as Tier 2 Internet service providers, or telecommunications operators, and provide transportation services to the DOD and as a result, suffer from the same cyber concerns. She also informed participants that Intelsat experienced nearly 60,000 denial-of-service attacks last year alone.

Ms. Sears then addressed the unique differences within the satellite industry that include capacity availability and radio frequency (RF) interference or bent pipe problems. In reference to capacity availability, terrestrial providers possess a large amount of bandwidth to facilitate low- and medium-level attacks, therefore ensuring customer service and levels of availability remain adequate even during an emergency. She commented the same is not true for the satellite industry; if a denial-of-service attack destroys a portion of the pipe, it is completely inundated and saturated. She reported that the satellite industry has imparted many countermeasures due to the number of denial of service attacks it experiences. Intentional and unintentional satellite interference is not specifically a cyber issue, however these types of interference have consequences that make them critical threats due to the service effects customers experience and the high-cost impact on profits. She stated that intentional RF interference is a denial of service that borders the cyber domain.

In conclusion, Ms. Sears acknowledged STF Co-Chairs Mr. Richard DalBello, Intelsat, and Mr. Marc Johansen, The Boeing Company, and stated the task force has the support of most of the global operators, key manufacturers, and integrators. The task force is currently reaching out to a wide range of subject matter experts in the satellite, cyber, and security areas as well as users and the broadcast community in an effort to better understand the vulnerabilities of the players in the marketplace. She added the STF will develop a questionnaire for industry members and has begun to draft its report and conclusions, and intends to deliver an updated report by August 2009. She thanked Mr. Mueller and the NSTAC for the opportunity to speak.

Adjournment.
Mr. Mueller acknowledged the work of the NSTAC IES and noted the great amount of NSTAC work accomplished by the IES participants. He thanked everyone for their participation and adjourned the 2009 NSTAC Meeting Open Session at 3:45 p.m.
Attachment 1: Report Recommendations to the President from the 2009 Meeting of the President’s National Security Telecommunications Advisory Committee – May 21, 2009

NGN Implementation Annex Working Group Letter to the President.

In May 2004, the President’s National Security Telecommunications Advisory Committee (NSTAC) began an examination of how the convergence of wireless, wireline, and Internet Protocol (IP) networks into global next generation networks (NGN) would affect national security and emergency preparedness (NS/EP) communications. In March 2005, the NSTAC submitted its NSTAC Near-Term Recommendations Report on Next Generation Networks to the President, recommending short-term actions that Federal departments and agencies could take to immediately preserve or enhance NS/EP communications for the future. The NSTAC then submitted a follow-on NSTAC Report on Next Generation Networks to the President in March 2006. The 2006 Report offered recommendations regarding the Government’s ability to support NS/EP functional requirements over the NGN and also provide greater capabilities to NS/EP users.

During the 2008 NSTAC Annual Meeting, the NSTAC Principals agreed to re-examine the previous NGN work with the following purposes:

► To closely examine the 2006 Report recommendations and to identify and review current Federal Government efforts that address issues in the report’s recommendations;

► To identify gaps among the 2006 Report recommendations, current NGN needs related to the provisioning of NS/EP communications, and existing Federal Government activities; and

► To provide follow-up recommendations to ongoing work and to enhance future Federal NGN NS/EP activities and implementation actions.

The NSTAC NGN Implementation Annex Working Group Letter to the President included follow-on recommendations against the following recommendations from the 2006 report:

Identity Management (NGNTF 2006-1)

The NSTAC originally recommended that multiple Federal Government organizations partner with the private sector to build a federated, interoperable, survivable, and effective identity management (IdM) framework for the NGN. We repeat that recommendation, as updated to include whatever Federal organizations assume or may be assigned leadership in Federal interagency IdM plans and processes. The NSTAC suggests the following enhancements to current agency activities:

► Review the recommendations in the Office of Science and Technology Policy (OSTP) National Science and Technology Council’s Subcommittee on Biometrics and Identity Management Identity Management Task Force Report released in September 2008, with particular emphasis on the requirements associated with industry and Government partnership around technology standards, governance, and research and development (R&D) investments;

► Review the recommendations that resulted from the IdM session of the September 2008 NSTAC R&D Exchange that called for improved IdM coordination, with a focus on NS/EP communications in future R&D activities; and

► Leverage ongoing Department of Defense (DOD) work to determine if it may be applied to broader agency efforts for an NS/EP NGN communications framework and architecture.
Coordination on Common Operational Criteria for NGN NS/EP End-to-End Services (NGNTF 2006-2)

Building on the recommendation to direct the OSTP, with support from National Communications System (NCS) agencies, to establish a joint industry-Government initiative to create a Common Operational Criteria development framework to meet NS/EP user requirements on the NGN, that would include a regular NGN summit to coordinate planning, measure progress of efforts, and recommend and monitor programs that would foster NS/EP capabilities within the NGN, the NSTAC suggests the following enhancements to current agency activities:

- Continue to coordinate across departments and agencies and with the private sector to establish a Common Operational Criteria development framework, and more closely organize NGN standardization and R&D requirements;
- Create a regular NGN summit with the communications and information technology sectors, Government, and other private sector stakeholders to discuss an end-to-end solution; and
- Review the NSTAC Report on National Security and Emergency Preparedness Internet Protocol-Based Traffic of November 2008 that examines risks associated with IP-based NS/EP communications and priority service traffic and presents recommendations to ensure the service delivery. These include managing traffic through quality of service programming in routers, and expanding the use of managed service agreements to provision NS/EP services within the new IP-based environment.

Research and Development (R&D) (NGNTF 2006-3)

Building on the recommendation to direct OSTP, with support from other relevant agencies, especially DHS, National Institute of Standards and Technology (NIST), and DOD, to establish and prioritize initiatives that will foster collaborative and coordinated R&D supporting a Common Operational Criteria and accelerate demonstrations of critical NGN NS/EP-supporting capabilities or technology among NGN telecommunication/information technology and service providers, the NSTAC suggests the following enhancements to current agency activities:

- Develop a more coordinated mechanism by which participants in R&D initiatives can collaborate and test R&D technology and capabilities on the NGN, including joint-testing, information sharing on emerging NGN technologies, and analysis of existing technologies;
- Ensure that departments and agencies collaborate more closely with the private sector to improve the technology transfer between Government-funded research and industry development;
- Ensure appropriate programs focus on long-term and short-term NGN R&D as it relates to supporting critical NS/EP communications capabilities to help prioritize initiatives for optimal resource allocation; and
- Ensure collaboration with private industry to include NGN NS/EP communications user requirements in the R&D efforts associated with the Comprehensive National Cybersecurity Initiative (CNCI), and the Networking and Information Technology Research and Development Program’s Cyber Security and Information Assurance Program and the High Confidence Software and Systems R&D program, as appropriate.

Technology Lifecycle Assurance and Trusted Technology (NGNTF 2006-4)

Building on the recommendation to direct the Office of Management and Budget (OMB), OSTP, DOD, Department of Homeland Security (DHS), and Department of Commerce (DOC) to drive comprehensive change in the security of NS/EP information and communications technology through policy, incentives, and research supporting the development and use of technology lifecycle assurance mechanisms and innovative trusted technologies that reduce the presence of intrinsic vulnerabilities, the NSTAC suggests the following enhancements to current agency activities:
Examine and consider incorporating industry models and best common practices into the complete NGN technology lifecycle as it applies to NS/EP communications, to include NGN hardware and software acquisition processes; supply chain assurance; and technology development;

Coordinate with the private industry to better understand global sourcing models, including how these models incorporate risk management and how to address risk resulting from globalized supply chains; and

Ensure coordination with and input from industry in the preparation for and implementation of any forthcoming supply chain risk management guidance resulting from the CNCI.

Resilient Alternate Communications (NGNTF 2006-5)

Building on the recommendation to direct OMB and DHS to ensure that Federal agencies are developing, investing in, and maintaining resilient, alternate communications for the NGN environment through emergency plans, analyses of alternative NGN access methods against threat scenarios, and augmentation and replacement methods for damaged or diminished access to the communications infrastructure, the NSTAC suggests the following enhancements to current agency activities:

Recognizing that NCS Directive 3-10, Minimum Requirements for Communications Continuity, addresses most suggestions in this recommendation, continue investigating technology solutions that will address IP priority solutions, NGN threat opportunities, and/or network resiliency assurance; and

Agreements, Standards, Policy, and Regulations (NGNTF 2006-6)

Building on the recommendation to direct DHS, the Department of State, and DOC (including NIST and the National Telecommunications and Information Administration) to engage and coordinate among domestic and international entities to ensure that policy frameworks established through Agreements, Standards, Policies, and Regulations support NGN NS/EP capabilities in a globally distributed NGN environment, the NSTAC suggests the following enhancements to current agency activities:

Improve coordination among DHS, DOS, DOC, and other agencies as appropriate, when engaging with domestic and international policy and standards entities in order to develop a more consistent, unified U.S. strategy;

Ensure that policy frameworks support NGN NS/EP capabilities in the U.S. and on the international level, including end-to-end NS/EP capabilities on separate NGN and legacy networks as well as when these networks converge; and

Incident Management on the NGN (NGNTF 2006-7)

Building on the recommendation to direct DHS to establish an NGN incident response capability that includes a Joint Coordination Center (JCC) for all key sectors, and with supporting mechanisms such as a training academy, exercise program, and R&D program, the NSTAC suggests the following enhancements to current agency activities:

Increase intergovernmental coordination to address incident management, including the development of standard operating procedures and greater interaction between cyber centers, private industry, and international entities, especially on cyber security issues;
Further promote private industry and Government collaboration by establishing a protocol for routine engagement between the U.S. Computer Emergency Readiness Team (US-CERT) and information technology and communications industry representatives; add explicit linkages for industry interaction during times of crisis to the standard operating procedures of the National Cyber Response Coordination Group; and involve industry participation in the establishment of the National Cyber Security Center; and

Investigate the existence of additional technologies, tools, and capabilities available to help strengthen DHS NGN incident response.

International Policy (NGNTF 2006-8)
Building on the recommendation to direct departments and agencies to develop cohesive domestic and international NS/EP communications policy, including intergovernmental cooperation mechanisms to harmonize NS/EP policy regimes, rules of engagement for non-U.S. companies in NS/EP incident response in the United States, and information sharing and response mechanisms in the international NGN environment, the NSTAC suggests the following enhancements to current agency activities:

Improve interagency coordination of NS/EP communications policy requirements and activities across the Federal government. In particular, continue to develop the intergovernmental cooperation mechanisms and rules of engagement for non-U.S. companies in incident response, specifically when engaging with international entities or standards bodies; and ensure that international standards and policies support global, end-to-end NS/EP communications.

First Responders (NGNTF 2006-9)
Building on the recommendation to direct DHS and other appropriate Government agencies to assist first responders and public safety organizations in making the transition to the NGN, the NSTAC suggests the following enhancements to current agency activities:

Emphasize the importance of the implementation of NGN systems, protocols, and processes at the first responder level while systems undergo the lengthy transition from legacy networks and services.

During the President’s 2007 NSTAC Meeting, the Assistant to the President for Homeland Security and Counterterrorism asked the NSTAC to examine concerns regarding the risk, if any, to IP-based NS/EP communications traffic, including voice over IP (VoIP), during times of perceived abnormal conditions or network duress. Specifically, the White House requested that the NSTAC determine if network degradation or disruption could affect the receipt or delivery of NS/EP traffic and, if so, provide recommendations to the President regarding measures to ensure the delivery of IP-based NS/EP traffic during those times of network duress.

The NSTAC recommends, in accordance with responsibilities and existing mechanisms established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions, that the President should:

In the short term, establish a policy that requires Federal departments and agencies to:

- Ensure their enterprise networks are properly designed and engineered to handle high traffic volume;
- Manage traffic through QoS programming in its routers to prioritize traffic, including NS/EP traffic; and
- Expand the use of managed service agreements to provision NS/EP services within the new IP-based environment.

In the long term, require that Federal departments and agencies remain actively involved in standards development of priority services on IP-based networks by supporting efforts to:
• Provide adequate funding that will be used to develop timely solutions across all technology platforms; and

• Commit appropriate resources to actively participate in and lead the global standards bodies’ efforts to address NS/EP IP-based priority services.

Petition the FCC for a declaratory ruling to confirm that network service providers may lawfully provide IP-based priority access services to NS/EP authorized users.

NSTAC Report to the President on Physical Assurance of the Core Network

The *NSTAC Report to the President on Physical Assurance of the Core Network* is classified as FOUO, and therefore not for public distribution.

NSTAC Outreach Task Force Letter to the President.

In response to a White House request regarding short-term priority recommendation areas, the NSTAC undertook a review of past recommendations and provided input to the President regarding priority areas for Government action related to past NSTAC recommendations. The NSTAC submitted, for the President’s consideration, four issue areas warranting priority Government action.

Government funding of priority programs—The Government programs for priority telecommunications services and the National Coordinating Center (NCC) are foundational platforms for NS/EP communications. It is important to continue providing adequate funding for development and implementation of the priority telecommunications services such as the Government Emergency Telecommunications Service and the Wireless Priority Service, particularly in light of the network’s rapid evolution to Internet Protocols. In addition, the 24/7 NCC for Telecommunications Watch is critical to ensuring NS/EP; funding to sustain and enhance this operation is also important.

Information sharing—Sharing sensitive information between the Government and the private sector is the first, most important step outlined in all Government NS/EP initiatives. The NSTAC supports the continued development of Government process protocols to share information with appropriately cleared public/private personnel who work on NS/EP issues. A key first step is improving the timely sponsorship and issuance of private sector clearances, up to and including a Top Secret/Sensitive Compartmented Information clearance.

Credentialing and access—During the Bush Administration, the creation of the essential service provider classification in the *Warning, Alert, and Response Network (WARN) Act* was a significant step in recognizing the important role of critical infrastructure owners and operators. To significantly enhance the resiliency of our national telecommunications infrastructure, appropriate Presidential guidance is necessary to ensure Government processes define key response personnel of critical infrastructures as essential service providers. Additionally, essential service providers should receive non-monetary Federal assistance under the *Robert R. Stafford Disaster Relief and Emergency Assistance Act* when acting in a mission-assignment capacity.

Telecommunications electric power dependency—The Nation’s reliance on power is undisputed. The NSTAC appreciates the work of the Federal Communications Dependency on Electric Power Working Group, and looks forward to its report on the long-term outage issue, which may have implications in sectors beyond the telecommunications industry.

Addendum to the NSTAC Report to the President on Physical Assurance of the Core Network

The *Addendum to the NSTAC Report to the President on Physical Assurance of the Core Network* is classified as FOUO, and therefore not for public distribution.
Cybersecurity Collaboration Report.

At the direction of the Executive Office of the President and following a comprehensive scoping effort, the President’s NSTAC established the Cybersecurity Collaboration Task Force in November 2008 to explore the need for and feasibility of creating a joint 24/7 public-private operational capability focused on improving the Nation’s ability to detect, prevent, mitigate, and respond to significant cyber incidents.

Based on the authorities and responsibilities established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions, the NSTAC recommends to the President to direct the establishment of a joint, integrated public-private, 24/7 operational cyber incident detection, prevention, mitigation, and response capability to address cyber incidents of national consequence.

To establish this capability, the NSTAC recommends the following:

- Create a JCC as the authoritative place for operational coordination with the private sector critical infrastructure and key resources owners and operators.
 - Assign Government and private sector representatives to develop the initial JCC CONOPS.
 - Provide full JCC functionality on a phased implementation timeline.
 - Build on the National Coordinating Center model integrated with the US-CERT model and create a joint, integrated public-private, 24/7 operational cyber incident detection, prevention, mitigation, and response capability to address a full range of cybersecurity needs.
 - Provide a dedicated interagency management structure to govern Federal involvement, including designation of a single, authoritative, and accountable office within the Executive Office of the President. This office should have budgetary and management authority across the Federal cybersecurity enterprise.
 - House the JCC in a Government-funded and equipped facility.
 - Establish mechanisms for the U.S. Government and the private sector to protect proprietary information and intellectual property, and to mitigate anti-trust concerns.
 - Provide resilient, redundant, and secure communications to coordinate across all engaged entities and sectors.
 - Before Phase II implementation, conduct antitrust review.

- Recognize the private sector as a trusted partner.
 - Conduct a joint public-private sector review to identify any existing mechanisms for robust information sharing.
 - Fully integrate private sector participants into the JCC operational capability on the same basis as government participants.
 - Develop a mechanism and procedures to conduct full, bi-directional information sharing among all JCC participants.
 - Provide tools and system access to all JCC participants to establish a fully collaborative working environment.

NSTAC Report to the President on Identity Management Strategy

At the direction of the Executive Office of the President and following a comprehensive scoping effort, the President’s NSTAC established the Identity Issues Task Force in November 2008 to explore the role of the Federal Government in IdM and how it could serve as a catalyst for broad implementation.
The NSTAC recommends the President, in accordance with responsibilities and existing mechanisms established by Executive Order 12472, Assignment of National Security and Emergency Preparedness Telecommunications Functions:

- **Demonstrate personal national leadership in IdM to positively influence the national culture, attitude, and opinion toward IdM.** Successful development and implementation of a national IdM vision and strategy requires national commitment across Government, industry, and individuals dependent on cyber applications.

- **Charter a national IdM office under specifically appointed and dedicated leadership, in the Executive Office of the President.** This office must have powers to integrate and harmonize national IdM policies and processes, including those related to law enforcement and security, as well as physical and logical access controls. This office should seek active private sector participation in developing such policies and processes in order to succeed and to ensure that successful solutions are shared with the private sector, as appropriate.

- **Direct the newly created office to develop a coordinated programmatic agenda to implement a comprehensive IdM vision and strategy to address, at a minimum, four component areas, specifically:**
 - Government organization and coordination;
 - Public-private IdM programs; policy and legislative coordination; and national privacy and civil liberties culture. Because no existing Government office or organization is engaged in all areas and issues across the total scope of IdM, new approaches are required to harness the expertise and interests across all areas.

With respect to Governmental organization and coordination, establish a single, authoritative and comprehensive IdM governance process with a dedicated mission and office under an accountable official reporting directly to the President, embracing all Federal policy, technology, and IdM application activities related to both screening and access controls. The established lead official should have control over defined IdM programs and resources across Government, including budget, as needed to advance Federal IdM under a single coherent strategy.

With respect to public-private programs, direct the appropriate Federal Government departments and agencies to work with the private sector to develop and advance a comprehensive and progressive IdM Research and Development agenda, focusing on Government-civil IdM interoperability. This effort should seek to establish interface standards to enable IdM applications to access and securely operate on global communications networks. In addition, this effort should partner with industry to embed IdM solutions in identity-sensitive applications of all kinds, promoting standards-based public-private programmatic collaboration.

With respect to policy and legislative coordination, determine what changes to policy and regulation should be made, and what legislative initiatives should be advocated to move quickly toward national IdM goals. Further, establish policy and a legal framework to support internal Federal activities and streamline Government-civil collaboration and partnership in support of those goals. In particular, the IdM office should pursue legislative efforts to support National IdM governance, organization and authority needs, as appropriate.

With respect to national privacy and civil liberties culture, develop a comprehensive and sustained communications plan to promote IdM reflecting key national and social values and embracing the strong National conviction to protect privacy and civil rights of both initiating and receiving parties as the national IdM strategy is developed and implemented.
Attachment 2: Attendance of Members at the 2009 Meeting of the President's National Security Telecommunications Advisory Committee

Mr. Edward A. Mueller
Qwest Communications International, Incorporated

Mr. John T. Stankey
AT&T Operations, Incorporated

Mr. Gregory Q. Brown
Motorola, Incorporated

Mr. Daniel J. Carroll, Jr.
Telcordia Technologies, Incorporated

Mr. Kenneth C. Dahlberg
Science Applications International Corporation

Mr. Marc Gordon
Bank of America Corporation

Mr. Arthur E. Johnson
Lockheed Martin Corporation

Mr. Kevin Johnson
Juniper Networks, Incorporated

Mr. Clayton M. Jones
Rockwell Collins, Incorporated

Mr. Howard L. Lance
Harris Corporation

Mr. Thomas J. Lynch
Tyco Electronics Ltd.

Mr. Walter B. McCormick, Jr.
United States Telecom Association

Mr. William A. Roper
VeriSign, Incorporated

Ms. Kay Sears
Intelsat General Corporation

Mr. William H. Swanson
Raytheon Company

Mr. Michael S. Zafirovski
Nortel Networks, Incorporated
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN</td>
<td>Advanced Intelligent Networks</td>
</tr>
<tr>
<td>AIP</td>
<td>Automated Information Processing</td>
</tr>
<tr>
<td>ASPR</td>
<td>Agreements, Standards, Policies, and Regulations</td>
</tr>
<tr>
<td>ATIS</td>
<td>Alliance for Telecommunications Industry Solutions</td>
</tr>
<tr>
<td>CATF</td>
<td>Core Assurance Task Force</td>
</tr>
<tr>
<td>CCS</td>
<td>Common Channel Signaling</td>
</tr>
<tr>
<td>CCTF</td>
<td>Cybersecurity Collaboration Task Force</td>
</tr>
<tr>
<td>CDEP WG</td>
<td>Communications Dependency on Electric Power Working Group</td>
</tr>
<tr>
<td>CIAO</td>
<td>Critical Infrastructure Assurance Office</td>
</tr>
<tr>
<td>CII</td>
<td>Critical Infrastructure Information</td>
</tr>
<tr>
<td>CI/KR</td>
<td>Critical Infrastructure and Key Resources</td>
</tr>
<tr>
<td>CIP</td>
<td>Critical Infrastructure Protection</td>
</tr>
<tr>
<td>CNS</td>
<td>Commercial Network Survivability</td>
</tr>
<tr>
<td>COP</td>
<td>Committee of Principals</td>
</tr>
<tr>
<td>COR</td>
<td>Council of Representatives</td>
</tr>
<tr>
<td>CSI</td>
<td>Commercial SATCOM Interconnectivity</td>
</tr>
<tr>
<td>CSS</td>
<td>Commercial Satellite Survivability</td>
</tr>
<tr>
<td>CTF</td>
<td>Convergence Task Force</td>
</tr>
<tr>
<td>CWIN</td>
<td>Cyber Warning Information Network</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>DDoS</td>
<td>Distributed Denial of Service</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOJ</td>
<td>Department of Justice</td>
</tr>
<tr>
<td>DOS</td>
<td>Department of State</td>
</tr>
<tr>
<td>DPA</td>
<td>Defense Production Act</td>
</tr>
<tr>
<td>DPMR</td>
<td>Detection, Prevention, Mitigation, and Response</td>
</tr>
<tr>
<td>E.O.</td>
<td>Executive Order</td>
</tr>
<tr>
<td>E911</td>
<td>Enhanced 911</td>
</tr>
<tr>
<td>EC</td>
<td>Electronic Commerce</td>
</tr>
<tr>
<td>ECC</td>
<td>Enhanced Call Completion</td>
</tr>
<tr>
<td>ECITF</td>
<td>Emergency Communications and Interoperability Task Force</td>
</tr>
<tr>
<td>ELS</td>
<td>Essential Line Service</td>
</tr>
<tr>
<td>EMP</td>
<td>Electromagnetic Pulse</td>
</tr>
<tr>
<td>EOP</td>
<td>Executive Office of the President</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERPWG</td>
<td>Emergency Response Procedures Working Group</td>
</tr>
<tr>
<td>ESF</td>
<td>Emergency Support Function</td>
</tr>
<tr>
<td>ESP</td>
<td>Essential Service Provider</td>
</tr>
<tr>
<td>ETSI TIPHON</td>
<td>European Telecommunications Standards Institute Telecommunications and Internet Protocol Harmonization over Networks</td>
</tr>
<tr>
<td>EWP</td>
<td>Emergency Wireless Protocols</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FECC</td>
<td>Federal Emergency Communications Coordinator</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FNI</td>
<td>Funding of NSTAC Initiatives</td>
</tr>
<tr>
<td>FOIA</td>
<td>The Freedom of Information Act</td>
</tr>
<tr>
<td>FOUO</td>
<td>For Official Use Only</td>
</tr>
<tr>
<td>FRB</td>
<td>Federal Reserve Board</td>
</tr>
<tr>
<td>FRP</td>
<td>Federal Response Plan</td>
</tr>
<tr>
<td>FRWG</td>
<td>Funding and Regulatory Working Group</td>
</tr>
<tr>
<td>FS</td>
<td>Financial Services</td>
</tr>
<tr>
<td>FSTF</td>
<td>Financial Services Task Force</td>
</tr>
<tr>
<td>GETS</td>
<td>Government Emergency Telecommunications Service</td>
</tr>
<tr>
<td>GI II</td>
<td>Global Information Infrastructure</td>
</tr>
<tr>
<td>GIRTF</td>
<td>Global Infrastructure Resiliency Task Force</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSA</td>
<td>General Services Administration</td>
</tr>
<tr>
<td>GTF</td>
<td>Globalization Task Force</td>
</tr>
<tr>
<td>GTISC</td>
<td>Georgia Tech Information Security Center</td>
</tr>
<tr>
<td>HPC</td>
<td>High Probability of Call Completion</td>
</tr>
<tr>
<td>HSA</td>
<td>Homeland Security Act</td>
</tr>
<tr>
<td>HSPD</td>
<td>Homeland Security Presidential Directive</td>
</tr>
<tr>
<td>I&C</td>
<td>Information & Communications</td>
</tr>
<tr>
<td>IA</td>
<td>Information Assurance</td>
</tr>
<tr>
<td>IAIP</td>
<td>Information Analysis and Infrastructure Protection</td>
</tr>
<tr>
<td>IATF</td>
<td>Information Assurance Task Force</td>
</tr>
<tr>
<td>IAW</td>
<td>Indications Assessment and Warnings</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communications Technology</td>
</tr>
<tr>
<td>ICWG</td>
<td>International Communications Working Group</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IdM</td>
<td>Identity Management</td>
</tr>
<tr>
<td>IDSG</td>
<td>Intrusion Detection Subgroup</td>
</tr>
<tr>
<td>IDT</td>
<td>International Diplomatic Telecommunications</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IEPs</td>
<td>International Emergency Preference Scheme</td>
</tr>
<tr>
<td>IEs</td>
<td>Industry Executive Subcommittee</td>
</tr>
<tr>
<td>IIG</td>
<td>Information Infrastructure Group</td>
</tr>
<tr>
<td>IIS</td>
<td>Industry Information Security</td>
</tr>
<tr>
<td>IISTF</td>
<td>Industry Information Security Task Force</td>
</tr>
<tr>
<td>IN</td>
<td>Intelligent Networks</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IS/CIP</td>
<td>Information Sharing/Critical Infrastructure Protection</td>
</tr>
<tr>
<td>IS/CIPTF</td>
<td>Information Sharing/Critical Infrastructure Protection Task Force</td>
</tr>
<tr>
<td>ISAC</td>
<td>Information Sharing and Analysis Center</td>
</tr>
<tr>
<td>ISATF</td>
<td>Internet Security/Architecture Task Force</td>
</tr>
<tr>
<td>ISEC</td>
<td>Information Security Exploratory Committee</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>ISSB</td>
<td>Information Systems Security Board</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>ITF</td>
<td>International Task Force</td>
</tr>
<tr>
<td>ITIC</td>
<td>Information Technology Industry Council</td>
</tr>
<tr>
<td>ITPI TF</td>
<td>Information Technology Progress Impact Task Force</td>
</tr>
<tr>
<td>JCC</td>
<td>Joint Coordinating Center</td>
</tr>
<tr>
<td>LMBATF</td>
<td>Last Mile Bandwidth Availability Task Force</td>
</tr>
<tr>
<td>LRG</td>
<td>Legislative and Regulatory Group</td>
</tr>
<tr>
<td>LRTF</td>
<td>Legislative and Regulatory Task Force</td>
</tr>
<tr>
<td>LRWG</td>
<td>Legislative and Regulatory Working Group</td>
</tr>
<tr>
<td>LTO</td>
<td>Long-Term Outage</td>
</tr>
<tr>
<td>MTT</td>
<td>Mobile Transportable Telecommunications</td>
</tr>
<tr>
<td>NAP</td>
<td>Network Access Provider</td>
</tr>
<tr>
<td>NCC</td>
<td>National Coordinating Center</td>
</tr>
<tr>
<td>NCCTF</td>
<td>National Coordinating Center Task Force</td>
</tr>
<tr>
<td>NCM</td>
<td>National Coordinating Mechanism</td>
</tr>
<tr>
<td>NCS</td>
<td>National Communications System</td>
</tr>
<tr>
<td>NCSD</td>
<td>National Cybersecurity Division</td>
</tr>
<tr>
<td>NCSP</td>
<td>National Cyber Security Partnership</td>
</tr>
<tr>
<td>NDAI</td>
<td>National Diversity Assurance Initiative</td>
</tr>
<tr>
<td>NECP</td>
<td>National Emergency Communications Plan</td>
</tr>
<tr>
<td>NECS</td>
<td>National Emergency Communications Strategy</td>
</tr>
<tr>
<td>NG</td>
<td>Network Group</td>
</tr>
<tr>
<td>NGN</td>
<td>Next Generation Network</td>
</tr>
<tr>
<td>NGNTF</td>
<td>Next Generation Networks Task Force</td>
</tr>
<tr>
<td>NII</td>
<td>National Information Infrastructure</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NLE</td>
<td>National Level Exercise</td>
</tr>
<tr>
<td>NOC</td>
<td>Network Operations Center</td>
</tr>
<tr>
<td>NPRM</td>
<td>Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>NPTF</td>
<td>National Plan to Defend Critical Infrastructures Task Force</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NRF</td>
<td>National Response Framework</td>
</tr>
<tr>
<td>NRIC</td>
<td>Network Reliability and Interoperability Council</td>
</tr>
<tr>
<td>NRP</td>
<td>National Response Plan</td>
</tr>
<tr>
<td>NS/EP</td>
<td>National Security and Emergency Preparedness</td>
</tr>
<tr>
<td>NS/VATF</td>
<td>Network Security/Vulnerability Assessments Task Force</td>
</tr>
<tr>
<td>NSA</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>NSDD</td>
<td>National Security Decision Directive</td>
</tr>
<tr>
<td>NSG</td>
<td>National Security Group</td>
</tr>
<tr>
<td>NSIE</td>
<td>Network Security Information Exchange</td>
</tr>
<tr>
<td>NSSE</td>
<td>National Special Security Events</td>
</tr>
<tr>
<td>NSSO</td>
<td>National Security Space Office</td>
</tr>
<tr>
<td>NSTAC</td>
<td>National Security Telecommunications Advisory Committee</td>
</tr>
<tr>
<td>NTI</td>
<td>National Telecommunications and Information Administration</td>
</tr>
<tr>
<td>NTMS</td>
<td>National Telecommunications Management Structure</td>
</tr>
<tr>
<td>NWC</td>
<td>Naval War College</td>
</tr>
<tr>
<td>OAM&P</td>
<td>Operations, Administration, Maintenance, and Provisioning</td>
</tr>
<tr>
<td>ODNI</td>
<td>Office of the Director of National Intelligence</td>
</tr>
<tr>
<td>OEC</td>
<td>Office of Emergency Communications</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>OMNCS</td>
<td>Office of the Manager, National Communications System</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OSG</td>
<td>Operations Support Group</td>
</tr>
<tr>
<td>OSTP</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>OWG</td>
<td>Operations Working Group</td>
</tr>
<tr>
<td>PAS</td>
<td>Priority Access Service</td>
</tr>
<tr>
<td>PCCIP</td>
<td>President's Commission on Critical Infrastructure Protection</td>
</tr>
<tr>
<td>PCI</td>
<td>Protected Critical Infrastructure Information</td>
</tr>
<tr>
<td>PDD</td>
<td>Presidential Decision Directive</td>
</tr>
<tr>
<td>PN</td>
<td>Public Network</td>
</tr>
<tr>
<td>PO</td>
<td>Program Office</td>
</tr>
<tr>
<td>PSN</td>
<td>Public Switched Network</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>PKI</td>
<td>Public-Key Infrastructure</td>
</tr>
<tr>
<td>PWG</td>
<td>Plans Working Group</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
</tbody>
</table>
R&O Report & Order
RDTF Research and Development Task Force
RDX Research and Development Exchange
RDXTF Research and Development Exchange
 Task Force
REWG Resource Enhancements Working Group
RP Restoration Priority
S&T Science and Technology
SAFETY Act ... Support Anti-Terrorism by Fostering Effective
 Technologies Act
SATCOM Satellite Communications
SCC Sector Coordinating Council
SCOE Security Center of Excellence
SME Subject Matter Expert
SOP Standard Operating Procedure
SRWG Security Requirements Working Group
SS7 Signaling System 7
Stafford Act ... Robert T. Stafford Disaster Relief
 and Emergency Assistance Act
STF Satellite Task Force
STU Secure Telephone Unit
TATF Trusted Access Task Force
Telecom Act ... Telecommunications Act of 1996
TEPITF Telecommunications and Electric Power
 Interdependency Task Force
TESP Telecommunications Electric Service Priority
TIM Telecommunications Industry Mobilization
TIP Telecommunications Infrastructure Providers
TOPOFF Top Officials
TSA Transportation Security Administration
TSP Telecommunications Service Priority
TSS Telecommunications Systems Survivability
TSSTF Telecommunications Systems Survivability
 Task Force
USSS United States Secret Service
UST Underground Storage Tanks
VTF Vulnerabilities Task Force
W/LBRDSTF ... Wireless/Low-Bit-Rate Digital Services
 Task Force
WPS Wireless Priority Service
WSPO Wireless Services Program Office
WSTF Wireless Services Task Force
WTF Wireless Task Force
Y2K Year 2000
Y2K Act Year 2000 Readiness and Disclosure Act