INDUSTRIAL CONTROL SYSTEMS
VULNERABILITIES AND RESOURCES
ICS SECURITY IS A NATIONAL IMPERATIVE

CISA leads an integrated, unified national effort to drive down industrial control systems risk

- ICS are integral to critical infrastructure (CI) operations
- Successful exploitation of ICS can result in not only data corruption and exfiltration, but significant physical consequences
- Different risk factors and security constraints come into play in an ICS environment
- Managing ICS risk requires specific information technology (IT) and operational technology (OT) technical expertise
HELP OUR PARTNERS HELP THEMSELVES

No organization can defeat ICS threats alone

• **Today**: We must continue to build on the outstanding ICS defense capabilities we currently provide

• **Tomorrow**: Sustainable ICS security through whole community ICS risk management
ICS
STAKEHOLDERS

MAJOR STAKEHOLDER CATEGORY

FEDERAL DEPARTMENTS AND AGENCIES
LAW ENFORCEMENT / INTELLIGENCE COMMUNITY / CYBERSECURITY CENTERS
OTHER FEDERAL DEPARTMENTS AND AGENCIES (INCLUDES REGULATORS AND SECTOR-SPECIFIC AGENCIES)
WHITE HOUSE
CONGRESS

SLT

UTILITY CO-OPS
CI OWNERS AND OPERATORS (INCLUDES SECTION 9 ENTITIES AND ISACS)
ICS VENDORS AND INTEGRATORS
SMALL / MEDIUM / LARGE COMPANIES

INDUSTRY

INTERNATIONAL

RESEARCHERS AND ACADEMIA

GENERAL PUBLIC
WHAT WE DO

INCIDENT RESPONSE AND RECOVERY

NATIONAL COMMUNICATIONS/EMERGENCY PREPAREDNESS

INFORMATION EXCHANGE

WATCH FLOOR OPERATIONS

CYBERSECURITY ASSESSMENTS

FEDERAL NETWORK PROTECTION

TECHNICAL ANALYSIS

HUNT

EXERCISES AND TRAINING

I ❤️ NCCIC
Case Studies
In FY 2012, 23 pipeline transmission companies reported spear-phishing incidents. Actors sought and exfiltrated ICS- and SCADA-related information:

- Document searches for “SCADA”
- Personnel lists
- Usernames and passwords
- Dial-up access information
- System manuals

13 Confirmed Compromises
3 Not Compromised
7 Unknown

https://go.usa.gov/xPbww
U.S. DAM INTRUSION

In September 2013, an Iranian actor accessed a SCADA system interface associated with a U.S. dam.

- Actors accessed the SCADA system, which was mechanically disabled for maintenance.
- Demonstrates ICS complexity leveraging the Open Platform Communications protocol.
- System required no login.
- Unclear if dam was targeted or dam was a target of opportunity.
Case Studies

UKRAINE CYBERATTACKS

Demonstrated concerted effort and capabilities by actors to leverage ICS attacks

INVESTIGATE

U.S. Government interagency team (DOE, FBI, DHS, E-ISAC) traveled to Ukraine to investigate

SPEAR PHISHING

Attackers used spear phishing to steal credentials, which they leveraged in connecting company VPN and remote desktop software to manipulate HMI controls

RESTORED POWER

Power was restored within 4-6 hours by switching to manual control.

ATTACKS

The attacks demonstrated extensive preparation and coordination but limited technical sophistication
Case Studies

UKRAINE CYBERATTACKS

First known cyberattacks on civilian infrastructure

2015 ATTACK

- BlackEnergy malware used for recon
- Six-month dwell time
- Credential harvesting
- Actual impact done via manual takeover
- Malicious firmware used
- Attacks on UPS/PBX

2016 ATTACK

- CRASHOVERIDE framework used
- Impact could have been automated
- Unclear why it was not more widespread
- Serial communication modules
- Infection vector is unknown

https://go.usa.gov/xPbww
Russian Activity Against ENERGY SECTOR

- Hundreds of victims targeted or impacted by this campaign
- Campaign targeted smaller entities with trusted relationships to obtain access to true victims
- Campaign end goal appears to have been ICS system accesses
Case Studies

Russian Activity Against ENERGY SECTOR

LEGEND
- Phishing
- Access
- Recon
- Test Emails
Case Studies

TRITON/TRISIS/HATMAN

Malware amplification attacks designed to cause physical damage, including include loss of life

- Sophisticated malware with low-level interaction with firmware
- Designed to be used in conjunction with other activity
Mitigations

INCIDENT RESPONSE
ROOT CAUSE ANALYSIS

Implement Application Whitelisting – 38%
Ensure Proper Configuration/Patch Management – 29%
Reduce your Attack Surface Area – 17%
Build a Defendable Environment – 9%
Manage Authentication – 4%
Monitor and Respond – 2%
Implement Secure Remote Access – 1%

https://go.usa.gov/xPbwU
Key Takeaways for Leaders

<table>
<thead>
<tr>
<th>Lead the Charge</th>
<th>Cyber is Not Technical but People</th>
<th>Prepare and Exercise</th>
<th>Incentivise Positive Outcomes</th>
<th>Reorient on Tactics vs. Indicators</th>
</tr>
</thead>
</table>

July 9, 2019