

- Different risk factors and security constraints come into play in an ICS environment
- Managing ICS risk requires specific information technology (IT) and operational technology (OT) technical expertise

HELP OUR PARTNERS HELP THEMSELVES

No organization can defeat ICS threats alone

- Today: We must continue to build on the outstanding ICS defense capabilities we currently provide
- Tomorrow: Sustainable ICS security through whole community ICS risk management

ICS STAKEHOLDERS

MAJOR STAKEHOLDER CATEGORY

Actors sought and exfiltrated ICS- and SCADA-related information

FY 2012 ACTIVITY AGAINST U.S. PIPELINES

In FY 2012, 23 pipeline transmission companies reported spear-phishing incidents

- Document searches for "SCADA"
 - Personnel lists
 - Usernames and passwords
 - Dial-up access information
 - System manuals
- 13 Confirmed Compromises
- 3 Not Compromised
- 7 Unknown

Case Studies

In September 2013, an Iranian actor accessed a SCADA system interface associated with a U.S. dam

- Actors accessed the SCADA system, which was mechanically disabled for maintenance
- System required no login
- protocol

Demonstrates ICS

Communications

complexity leveraging the Open Platform

 Unclear if dam was targeted or dam was a target of opportunity

Case Studies

UKRAINE CYBERATTACKS

Demonstrated concerted effort and capabilities by actors to leverage ICS attacks

INVESTIGATE

U.S. Government interagency team (DOE, FBI, DHS, E-ISAC) traveled to Ukraine to investigate

SPEAR PHISHING

Attackers used spear phishing to steal credentials, which they leveraged in connecting company VPN and remote desktop software to manipulate HMI controls

RESTORED POWER

Power was restored within 4-6 hours by switching to manual control.

ATTACKS

The attacks demonstrated extensive preparation and coordination but limited technical sophistication

Case Studies

UKRAINE CYBERATTACKS

First known cyberattacks on civilian infrastructure

2015 ATTACK

- BlackEnergy malware used for recon
- Six-month dwell time
- Credential harvesting
- Actual impact done via manual takeover
- Malicious firmware used
- Attacks on UPS/PBX

2016 ATTACK

- CRASHOVERIDE framework used
- Impact could have been automated
- Unclear why it was not more widespread
- Serial communication modules
- Infection vector is unknown

July 9, 2019

Russian government actors targeting U.S. Government entities and organizations in the Energy, Nuclear, Water, Aviation, and Critical Manufacturing critical infrastructure sectors

 Hundreds of victims targeted or impacted by this campaign

 Campaign targeted smaller entities with trusted relationships to obtain access to true victims

 Campaign end goal appears to have been ICS system accesses

Russian Activity Against **ENERGY SECTOR**

TRITON/TRISIS/HATMAN

Malware amplification attacks designed to cause physical damage, including include loss of life

Sophisticated malware with low-level interaction with firmware

Designed to be used in conjunction with other activity

INCIDENT RESPONSE ROOT CAUSE ANALYSIS

Implement Application Whitelisting – 38%

Implement Secure Remote Access – 1%

Monitor and Respond – 2%

Ensure Proper Configuration/Patch Management – 29%

> Reduce your Attack Surface Area – 17%

Manage
Authentication – 4%

Build a Defendable Environment – 9%

https://go.usa.gov/xPbwU

Key Takeaways for Leaders

LEAD THE CHARGE CYBER IS
NOT
TECHNICAL
BUT PEOPLE

PREPARE AND EXERCISE

INCENTIVISE POSITIVE OUTCOMES

REORIENT
ON TACTICS
VS.
INDICATORS

