

TLP:WHITE

Defending Against
Software Supply Chain
Attacks

Publication: April 2021

Cybersecurity and Infrastructure Security Agency

DISCLAIMER: This document is marked TLP:WHITE. Disclosure is not limited. Sources may use TLP:WHITE when information carries minimal or no
foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:WHITE information
may be distributed without restriction. For more information on the Traffic Light Protocol, see http://www.cisa.gov/tlp/.

TLP:WHITE

http://www.cisa.gov/tlp/

TLP:WHITE

INTRODUCTION
A software supply chain attack occurs when a cyber threat actor infiltrates a software vendor’s network
and employs malicious code to compromise the software before the vendor sends it to their customers.
The compromised software then compromises the customer’s data or system. Newly acquired software
may be compromised from the outset, or a compromise may occur through other means like a patch or
hotfix. In these cases, the compromise still occurs prior to the patch or hotfix entering the customer’s
network. These types of attacks affect all users of the compromised software and can have widespread
consequences for government, critical infrastructure, and private sector software customers.

This document provides an overview of software supply chain risks and recommendations on how
software customers and vendors can use the National Institute of Standards and Technology (NIST)
Cyber Supply Chain Risk Management (C-SCRM) framework and the Secure Software Development
Framework (SSDF) to identify, assess, and mitigate risks.

Page | 2 TLP:WHITE

TLP:WHITE

SOFTWARE SUPPLY CHAIN RISKS
Software supply chains fit within the greater information and communications technology (ICT) supply
chain framework. The ICT supply chain is the network of retailers, distributors, and suppliers that
participate in the sale, delivery, and production of hardware, software, and managed services. The ICT
Supply Chain Lifecycle has six phases. At each phase of the ICT Supply Chain Lifecycle, software is at
risk of malicious or inadvertent introduction of vulnerabilities (see table 1 for examples).1

Table 1: ICT Supply Chain Lifecycle and Examples of Threats

DE
SI

GN

DE
VE

LO
PM

EN
T

AN
D

PR
OD

UC
TI

ON

DI
ST

RI
BU

TI
ON

AC

QU
IS

IT
IO

N
AN

D
DE

PL
OY

M
EN

T
M

AI
NT

EN
AN

CE
DI

SP
OS

AL

Hijacked Cellular Devices. 2016 – A foreign company designed software used by a U.S. cell
phone manufacturer. The phones made encrypted records of text and call histories, phone
details, and contact information and transmitted that data to a foreign server every 72 hours.

SolarWinds. 2020 – An IT management company was infiltrated by a foreign threat actor who
maintained persistence in its network for months. The threat actor left the network only after it
had compromised the company’s build servers and used its update process to infiltrate customer
networks.

End-User Device Malware. 2012 – Researchers from a major U.S. software company
investigating counterfeit software found malware preinstalled on 20 percent of devices they
tested. The malware was installed in new desktop and laptop computers after they were shipped
from a factory to a distributor, transporter, or reseller.

Kaspersky Antivirus. 2017 – An overseas-based antivirus vendor was being used by a
foreign intelligence service for spying. U.S. government customers were directed to remove
the vendor’s products from networks and disallowed from acquiring future products from that
vendor.

Backdoors Embedded in Routine Maintenance Updates. 2020 – Thousands of public and
private networks were infiltrated when a threat actor used a routine update to deliver a
malicious backdoor.

Sensitive Data Spillage. 2019 – A researcher bought old computers, flash drives, phones and
hard drives, and found only two properly wiped devices out of 85 examined. Also found were
hundreds of instances of personally identifiable information (PII) spillage, including Social
Security numbers, passport numbers, and credit card numbers.

1 For additional details on the ICT Supply Chain Lifecycle, see the December 2018 CISA-NRMC factsheet, “Supply Chain
Risks for Information and Communications Technology,” https://www.cisa.gov/publication/supply-chain-risks-information-and-
communication-technology.

Page | 3 TLP:WHITE

https://www.cisa.gov/publication/supply-chain-risks-information-and-communication-technology
https://www.cisa.gov/publication/supply-chain-risks-information-and-communication-technology
https://www.cisa.gov/publication/supply-chain-risks-information-and

TLP:WHITE

Common Attack Techniques
Threat actors employ different techniques to execute software supply chain attacks. Three common
techniques are:

• Hijacking updates
• Undermining code signing2

• Compromising open-source code
These techniques are not mutually exclusive, and threat actors often leverage them simultaneously.3

Hijacking Updates
Most modern software receives routine updates to address bugs and security issues. Software vendors
typically distribute updates from centralized servers to customers as a routine part of product
maintenance. Threat actors can hijack an update by infiltrating the vendor’s network and either inserting
malware into the outgoing update or altering the update to grant the threat actor control over the
software’s normal functionality. For example, the NotPetya attack occurred in 2017 when Russian
hackers targeting Ukraine spread malware through tax accounting software popular in Ukraine. What
would later be called the NotPetya malware spread well beyond Ukraine and caused major global
disruptions in crucial industries, including international shipping, financial services, and healthcare.4,5

Undermining Codesigning
Codesigning is used to validate the identity of the code’s author and the integrity of the code. Attackers
undermine codesigning by self-signing certificates, breaking signing systems, or exploiting
misconfigured account access controls. By undermining codesigning, threat actors are able to
successfully hijack software updates by impersonating a trusted vendor and inserting malicious code
into an update.6 For example, APT 41, a China-based threat actor, routinely undermines codesigning
while conducting sophisticated software supply chain compromises against the United States and other
countries.7,8

2 David Cooper, et al., “Security Considerations for Code Signing,” NIST Cybersecurity White Paper (January 2018)
https://csrc.nist.gov/publications/detail/white-paper/2018/01/26/security-considerations-for-code-signing/final.
3 The Atlantic Council, “Breaking trust: Shades of crisis across an insecure software supply chain,”
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-
supply-chain/.
4 CISA, Alert TA17-181A, “Petya Ransomware,” https://us-cert.cisa.gov/ncas/alerts/TA17-181A.
5 Wired, “The Untold Story of NotPetya, the Most Devastating Cyberattack in History,” https://www.wired.com/story/notpetya-
cyberattack-ukraine-russia-code-crashed-the-world/.
6 “Breaking trust,” 14-16.
7 U.S. Department of Justice, “Seven International Cyber Defendants, Including ‘Apt41’ Actors, Charged In Connection With
Computer Intrusion Campaigns Against More Than 100 Victims Globally,” https://www.justice.gov/opa/pr/seven-international-
cyber-defendants-including-apt41-actors-charged-connection-computer.
8 FireEye, “APT41: A Dual Espionage and Cyber Crime Operation,” https://www.fireeye.com/blog/threat-
research/2019/08/apt41-dual-espionage-and-cyber-crime-operation.html.

Page | 4 TLP:WHITE

https://csrc.nist.gov/publications/detail/white-paper/2018/01/26/security-considerations-for-code-signing/final
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://us-cert.cisa.gov/ncas/alerts/TA17-181A
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.justice.gov/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer
https://www.justice.gov/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer
https://www.fireeye.com/blog/threat-research/2019/08/apt41-dual-espionage-and-cyber-crime-operation.html
https://www.fireeye.com/blog/threat-research/2019/08/apt41-dual-espionage-and-cyber-crime-operation.html
https://www.fireeye.com/blog/threat
https://www.justice.gov/opa/pr/seven-international
https://www.wired.com/story/notpetya
https://us-cert.cisa.gov/ncas/alerts/TA17-181A
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software
https://csrc.nist.gov/publications/detail/white-paper/2018/01/26/security-considerations-for-code-signing/final

TLP:WHITE

Compromising Open-Source Code
Open-source code compromises occur when threat actors insert malicious code into publicly accessible
code libraries, which unsuspecting developers—looking for free blocks of code to perform specific
functions—then add into their own third-party code. For example, in 2018, researchers discovered 12
malicious Python libraries uploaded on the official Python Package Index (PyPI). The attacker used
typosquatting tactics by creating libraries titled “diango,” “djago,” “dajngo,” etc., to lure developers
seeking the popular “django” Python library. The malicious libraries contained the same code and
functionality of those they impersonated; but they also contained additional functionality, including the
ability to obtain boot persistence and open a reverse shell on remote workstations.9 Open-source code
compromises can also affect privately owned software because developers of proprietary code
routinely leverage blocks of open-source code in their products.10

Software Supply Chain Attack Threat Profile
Software supply chain attacks typically require strong technical aptitude and long-term commitment, so
they are often difficult to execute. These attacks differ from trusted relationship attacks in which threat
actors infiltrate a less secure third-party organization to exploit and access an existing trusted
connection that the third party has with the target organization.11 Some criminal threat actors succeed
in trusted relationship attacks and some of the less complex types of software supply chain attacks,
such as modifying open-source code or app store attacks.

In general, advanced persistent threat (APT) actors are more likely to have both the intent and
capability to conduct the types of highly technical and prolonged software supply chain attack
campaigns that may harm national security.

Uniquely Vulnerable to Software Supply Chain Attacks
Organizations are uniquely vulnerable to software supply chain attacks for two major reasons: first,
many third-party software products require privileged access; and second, many third-party software
products require frequent communication between a vendor’s network and the vendor’s software
product located on customer networks.

Privileged Access
Many common, third-party software products require elevated system privileges to operate effectively;
this includes products like antivirus, IT management, and remote access software. Even when a
product can effectively operate on a network with reduced privileges, products will oftentimes default to
asking for greater privileges during installation to ensure the product’s maximum effectiveness across
different types of customer networks. Customers often accept third-party software defaults without
investigating further, allowing additional accessibility vectors. Additionally, because these types of
products are typically present on every system within a network, including authoritative and domain

9 ZDNet, “Twelve malicious Python libraries found and removed from PyPI,” https://www.zdnet.com/article/twelve-malicious-
python-libraries-found-and-removed-from-pypi/.
10 “Breaking trust,” 20-21.
11 MITRE, “Initial Access,” https://attack.mitre.org/tactics/TA0001/.

Page | 5 TLP:WHITE

https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001
https://www.zdnet.com/article/twelve-malicious
https://organization.11
https://products.10

Software Supply Chain Compromise
in the News: SolarWinds Orion

TLP:WHITE

management servers, vulnerabilities or malware inserted into those software products could provide
malicious actors with privileged access to the most critical systems within a network.

Frequent Communication
Third-party software products typically require frequent
communication with the vendor in order to update the
software, fix known vulnerabilities, and provide security
against new and evolving cybersecurity threats. This
connectivity could allow malicious actors to send
illegitimate software updates containing malware to the
customer. Conversely, malicious actors could also
intentionally prevent an update from reaching
customers, ensuring those customers remain
vulnerable to certain types of malware. Malicious actors
can then exploit those vulnerabilities.

In December 2020, the cybersecurity firm FireEye
discovered a backdoor – subsequently named
SUNBURST - in the SolarWinds Orion platform.
Researchers later discovered that a threat ac tor
used an implant, r eferred to as SUNSPOT, to access
the build server and insert the backdoor. After
spreading the backdoor to many customers via
routine updates, the threat ac tor targeted select
victim netw orks for follow-on actions, including the
use of addi tional malware. This software supply
chain attack provided the threat actor access to
systems and data on numerous government and
private sector networks. The threat actor was
patient, t horough, and m aintained excellent
operational security throughout the process, making
their presence very hard to detect. O verall, the threat
actor maintained a light malware footprint, us ing
legitimate credentials and remote access when
possible. While the SolarWinds Orion platform
compromise provided access to most of t he threat
actor’s victims, the threat ac tor used non-supply
chain compromise techniques to gain access to a
limited number of victims. The software supply chain
attack conducted against S olarWinds and its
customers serves as a recent e xample of how
effective a software supply chain attack can be.

Consequences of Software Supply Chain
Attacks
The consequences of a software supply chain attack
can be severe. First, threat actors use the
compromised software vendor to gain privileged and
persistent access to a victim network. By compromising
a software vendor, they bypass perimeter security
measures like border routers, firewalls, etc., and gain
initial access. If a threat actor loses network access,
they may re-enter a network using the compromised
software vendor. While gaining initial persistent access
can be relatively indiscriminate, threat actors will often
be more selective in choosing which victims they target
for follow-on actions. Follow-on actions are highly
variable but often start when the threat actor injects
additional tailored malware packages into a chosen target. Depending on the threat actor’s intent and
capability, this additional malware may allow the threat actor to conduct various malicious activities that
may include performing data or financial theft, monitoring organizations or individuals, disabling
networks or systems, or even causing physical harm or death.

RECOMMENDATIONS
Network defenders are limited in their ability to quickly mitigate consequences after a threat actor has
compromised a software supply chain. This is because organizations rarely control their entire software
supply chain and lack authority to compel every organization in their supply chain to take prompt
mitigation steps. Due to the difficulty of mitigating consequences after a software supply chain attack
occurs, network defenders should observe industry best practices before an attack has occurred.
Implementing best practices will bolster an organization’s ability to prevent, mitigate, and respond to
such attacks.

Page | 6 TLP:WHITE

TLP:WHITE

Recommendations for Customers
Organizations acquiring software should consider its use, as with other ICT products and services, in
the context of a risk management program. Such a program should use an operationalized systems
security engineering framework12 and a formal C-SCRM

Risk Management Program approach across organization, mission/business, and
system tiers.13 A mature risk management program
enables an organization to understand risks presented by
ICT products and services, including software, in the
context of the mission or business processes they support.
Organizations can manage such risks through a variety of
technical and non-technical activities, including those
focused on C-SCRM for software and the associated full
software lifecycle.

Some Simple Steps
1. Identify your key mission or business

processes—what es sential services do you
provide or what drives your revenue?

2. Maintain an inventory of your organization’s
current and future software licenses

3. Research and document how each software
license is supported by its supplier (e.g., Are
patches provided? Does the supplier offer
periodic email updates about the product?) NIST suggests eight key practices for establishing a C-

SCRM approach that can be applied to software.14
4. Understand how your software (current or

future purchases) supports or otherwise
relates to your key processes

1. Integrate C-SCRM across the organization.
2. Establish a formal C-SCRM program.
3. Know and manage critical components and

suppliers. 5. Document how you would plan to address
software for which a vulnerability is disclosed 4. Understand the organization’s supply chain.

5. Closely collaborate with key suppliers.
6. Include key suppliers in resilience and improvement

activities.
7. Assess and monitor throughout the supplier relationship.
8. Plan for the full lifecycle.

These practices can assist in preventing, mitigating, and responding to software vulnerabilities that may
be introduced through the cyber supply chain and exploited by malicious actors.

Actions to Prevent Acquiring Malicious or Vulnerable Software
Establish a formal, organization-wide C-SCRM program to ensure that supply chain risk
considerations receive attention across the organization. This includes executives and
managers within operations and personnel across supporting roles, such as IT, acquisitions,

legal, risk management, and security. Collectively, these roles can influence risk mitigation across an
organization’s suppliers through acquisition due diligence and contracting activities that:

• Apply the same policies to suppliers that are applied internally.

12 Ron Ross, et al., “Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of
Trustworthy Secure Systems,” NIST SP 800-160 Vol. 1 (November 2016), https://doi.org/10.6028/NIST.SP.800-160v1.
13 Jon Boyens, et al., “Supply Chain Risk Management Practices for Federal Information Systems and Organizations”, NIST
SP 800-161 (April 2015), http://dx.doi.org/10.6028/NIST.SP.800-161.
14 Jon Boyens, et al., “Key Practices in Cyber Supply Chain Risk Management: Observations from Industry”, NISTIR 8276
(February 2021), https://doi.org/10.6028/NIST.IR.8276.

Page | 7 TLP:WHITE

https://doi.org/10.6028/NIST.SP.800-160v1
http://dx.doi.org/10.6028/NIST.SP.800-161
https://doi.org/10.6028/NIST.IR.8276

TLP:WHITE

• Establish a set of security requirements or controls for all suppliers varied based on the
criticality of the supplier and the permissions granded to the ICT.

• Use supplier certifications to ascertain whether a
supplier: Prevention

Some Simple Steps

o Uses a software development lifecycle
(SDLC) and incorporates secure software
development practices throughout all
lifecycle phases.

1. Ask your software supplier/vendor (or check
the vendor’s website) whether the supplier:
• Uses a software development l ifecycle

incorporating secure software
development pr actices

o Looks for known weaknesses and
vulnerabilities in their source code and
compiled code, and demonstrates the
degree of rigor they apply. This may include
requiring a specified level of developer
testing and evaluation (e.g., static code
analysis, threat modeling and vulnerability
analysis, third-party verification of processes,
manual code review, penetration testing,

15 dynamic code analysis, etc.).

• Actively identifies and discloses
vulnerabilities while maintaining a
vulnerability response program

• Enables patch management
capabilities

• Develops, m aintains, and uses
approved supplier lists for its products

2. Request a software component inventory with
each contemplated software purchase Actively identifies and discloses

vulnerabilities. • If a v endor cannot provide a
component inventory, consider using
that as a differentiator when selecting
among competing products

o

o

Maintains a product vulnerability response
program.

o Uses proactive exploit mitigation
technologies in the code they acquire. • Post-purchase, incorporate that

information into your software inventory o Enables patch management capabilities.
o Submits products for third-party

assessments.
o Participates in Common Vulnerabilities and Exposures (CVE) generation,

including whether the supplier participates as a CVE Numbering Authority
(CNA).16

o Develops, maintains, and uses approved supplier lists for its products and
services.

• Require a software component inventory (e.g., software bill of materials) that
articulates the components and other attributes of delivered software developed
by the vendor and third parties.

• Ensure vendors enforce supply chain security requirements commensurate with
those used by the organization acquiring the vendor’s products and services.

As part of its standard acquisition and deployment process, an organization may be able to confirm
software and firmware integrity by using common code authentication or other mechanisms.17 In the
absence of this opportunity, the organization should obtain a certification from the vendor that such
authentication mechanisms were applied in the vendor’s ordinary course of business while obtaining a
digital signature or data for checksum verification. Customers can employ ongoing integrity

15 NIST, “Security and Privacy Controls for Information Systems and Organizations,” NIST SP 800-53 rev 5, SA-11, SR-6,
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final.
16 For more information, see MITRE, “About CVE,” https://cve.mitre.org/about/.
17 NIST SP 800-161, SI-7.

Page | 8 TLP:WHITE

https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://cve.mitre.org/about/

TLP:WHITE

management—either independently or in coordination with a manufacturer or distributor—by applying
commercially available software/firmware tamper seals, which allow ongoing, automated integrity
checking. An organization could make integrity management part of a broader comply-to-
connect/comply-to-remain policy.18

Actions to Mitigate Deployed Malicious or Vulnerable Software
Despite C-SCRM actions, some malicious content and vulnerabilities may still find their way into an
organization’s enterprise environment. Therefore, an organization should take other steps to mitigate
vulnerable software components.

Central to its efforts, an organization should develop and implement a vulnerability management
program, which enables the organization to scan for, identify, triage, and mitigate discovered
vulnerabilities. An organization’s vulnerability management program should include processes and tools
for provisioning and applying software patches, as necessary.19

An organization can reduce its software attack surface through configuration
management, which includes:20

• Placing configurations under change control;
• Conducting security impact analyses;
• Implementing manufacturer-provided guidelines to harden software, operating systems, and

firmware; and
• Maintaining an information system component inventory.21

Alongside configuration management, an organization should identify its critical data and baseline how
that data flows between processes or systems. Defenders can deploy analytics, including those based
on machine learning/artificial intelligence, to identify subsequent anomalies in data flows, which may be
early indicators of a threat actor’s exploitation of a vulnerability.

Every organization should monitor configuration settings to focus on maintaining the integrity of
hardware, software, and firmware.22

For example, monitoring can identify unauthorized changes to Trusted Platform Module (TPM)
configurations, such as those that establish which TPM features are enabled. Similarly, an organization

18 NIST SP 800-53 rev 5, SI-7, SR-9, SR-10; National Security Agency, “Comply-to-Connect,”
https://apps.nsa.gov/iaarchive/library/ias/adversary-mitigations/comply-to-connect.cfm; Defense Information Systems Agency,
“Comply to Connect Fact Sheet,” https://www.disa.mil/-/media/Files/DISA/Fact-
Sheets/Comply_to_Connect_Fact_Sheet_050720.ashx.
19 Joint Task Force, “Security and Privacy Controls for Information Systems and Organizations”, NIST SP 800-53 rev 5
(September 2020), RA-5, https://doi.org/10.6028/NIST.SP.800-53r5; Murugiah Souppaya and Karen Scarfone, “Guide to
Enterprise Patch Management Technologies,” NIST SP 800-40 rev 3 (July 2013), http://dx.doi.org/10.6028/NIST.SP.800-40r3;
and Murugiah Souppaya, et al., “Improving Enterprise Patching for General IT Systems: Utilizing Existing Tools and
Performing Processes in Better Ways,” NIST SP1800-31a (Preliminary Draft, September 2020),
https://www.nccoe.nist.gov/sites/default/files/library/sp1800/patching-nist-sp1800-31a-preliminary-draft.pdf.
20 NIST SP 800-161, CM-1 through CM-11.
21 NIST, “National Checklist Program Repository.” https://checklists.nist.gov.
22 NIST SP 800-53 rev 5, CM-2, CM-3, CM-6, CM-8, CM-14, SA-10, SI-2, SI-7, SR-9, SR-10.

Page | 9 TLP:WHITE

https://apps.nsa.gov/iaarchive/library/ias/adversary-mitigations/comply-to-connect.cfm
https://www.disa.mil/-/media/Files/DISA/Fact-Sheets/Comply_to_Connect_Fact_Sheet_050720.ashx
https://www.disa.mil/-/media/Files/DISA/Fact-Sheets/Comply_to_Connect_Fact_Sheet_050720.ashx
https://doi.org/10.6028/NIST.SP.800-53r5
http://dx.doi.org/10.6028/NIST.SP.800-40r3
https://www.nccoe.nist.gov/sites/default/files/library/sp1800/patching-nist-sp1800-31a-preliminary-draft.pdf
https://checklists.nist.gov/

 Mitigation
 Some Simple Steps

TLP:WHITE

should monitor configurations that establish a vendor- or user-defined hardened state and whether
unauthorized changes to those configurations occur.

Additionally, limiting external and internal
connections to only those on an approved
list for each software deployment can help

1. Implement a documented vulnerability
management program

mitigate risk. Using expected software behavior—such
as expected vendor URLs or IP ranges and ports with
which a software package will periodically
communicate—security engineering can implement
information controls (e.g., firewalls, intrusion
detection/prevention) to prevent and detect unexpected

• Using instructions from t he vendor,
configure software to automatically check for
and install patches

• Register software licenses with the vendor,
including contact information, s o that
vulnerabilities and mitigation strategies can
be communicated

behaviors.23 However, limiting connections based on
static set of URLs or IP ranges may not be feasible or
effective because many vendors have highly dynamic
environments and use cloud service providers to host
vendor resources. For many reasons, organizations
should consider applying an identity- and object-based
approach to baseline normal behavior. Organizations
should also consider using machine learning or artificial
intelligence to identify anomalies and deny abnormal
information flows.

• Follow vendor instructions to harden
software, operating systems, and firmware

2. If vendor specifies URLs or IP ranges and ports to
and from w hich software should communicate,
consider establishing firewall rules to ensure such
communications do not oc cur outside of t hose
parameters

3. Where feasible, apply basic network segmentation
to isolate different parts of the enterprise (e.g.,
maintain a separate network for guest users,
separate the networks used by different f unctional
areas of the organization, etc.)

Using deliberate network segmentation, organizations
can mitigate the effects of software vulnerabilities and
associated exploits, as well as aid incident response and
recovery. Segmentation helps confine a vulnerability or
attack to portion of a customer’s enterprise.
Organizations can also achieve such mitigation by

4. Monitor endpoints and/or servers for unexplained
deviations from your software inventory; remove or
isolate unauthorized software

implementing endpoint-based micro-segmentation with host-based firewalls or agents. Micro-
segmentation can be part of a “zero trust” architecture or implemented on its own.24

Furthermore, organizations can use heterogeneity techniques (e.g., using two or more vendors to cover
different network segments) to increase resilience and decrease the overall enterprise risk from
vulnerabilities of a single product or service (see following section).

Actions to Increase Resilience to a Successful Exploit
If a threat actor successfully exploits vulnerable software, organizations can use resilience
measures to limit the impact to mission or business operations, personnel, and systems. An
important action is to ensure the organization’s contingency planning accounts for software.25

23 NIST SP 800-161, AC-4, CA-3, and SC-7.
24 Scott Rose, et al., “Zero Trust Architecture,” NIST SP 800-207 (August 2020), https://doi.org/10.6028/NIST.SP.800-207.
25 NIST SP 800-161, CP-1 and CP-2.

Page | 10 TLP:WHITE

https://doi.org/10.6028/NIST.SP.800-207

TLP:WHITE

Where feasible, this planning includes pre-identifying and establishing alternative suppliers for software
capabilities. It also includes establishing failover processes to follow when software capabilities and the
processes they support become unavailable.

Establishing failover processes requires a strong
understanding of how each piece of software is used within
an organization—the mission or business it supports, the
associated processes of which it is a part, and the
anticipated mission or business impact if those processes
are interrupted. Having this understanding enables the
organization to assess the criticality of its various mission
or business processes and associated software
dependencies. Within that context, the organization can
then identify failover options.

Understanding the software’s criticality also enables an
organization to make risk-based decisions regarding the
extent to which resources should be spent on resilience
measures. As an organization determines actions to
increase resilience, it should consider developing a
playbook for software supply chain compromises.26

Recommendations for Software Vendors
CISA encourages software vendors to implement and
follow a software development life cycle (SDLC) in their
ordinary course of business. Vendor contracts for

Resilience
Some Simple Steps

1. Pre-identify and establish alternative suppliers
for the critical software you use
• Have plans in place to switch to a new

supplier, if feasible, when critical
software becomes unavailable or
presents an increased risk

2. Use your understanding of how software
supports critical business or mission functions
to identify failover processes and workarounds
in the event functionality with specific software
becomes unavailable
• Prepare written failover processes for

critical software
• Periodically conduct table-top exercises

or walk-throughs to ensure your
organization understands the steps in its
failover processes

• Where possible, coordinate failover
processes with vendors and other
external stakeholders

customers in some sectors increasingly contemplate—and even include—SDLC requirements.
Vendors may also apply a maturity model to assess and communicate the quality and capability of their
SDLC processes. However, NIST observes that “[f]ew [SDLC] models explicitly address software
security in detail, so secure software development practices usually need to be added to each SDLC
model.”27 As such, NIST published a white paper that suggests a subset of high-level practices that
should be particularly helpful for integrating a secure software development framework (SSDF) into a
vendor’s SDLC. Much like the NIST Cybersecurity Framework, NIST’s SSDF white paper offers a set of
practices, subdivided into tasks, and mapped to industry and NIST standards. SDLC and SSDF
processes provide a means for the vendor community to meet their customers’ requirements for
specific security practices.

Before a vendor can prevent, mitigate, or increase resilience related to its software, it must prepare for
secure software development, which includes:28

26 Michael Bartock, et al., “Guide for Cybersecurity Event Recovery”, NIST SP 800-184 (December 2016),
https://doi.org/10.6028/NIST.SP.800-184.
27 Dodson, et al., “Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software Development Framework
(SSDF),” ii (April 23, 2020), https://doi.org/10.6028/NIST.CSWP.04232020.
28 Ibid., 6.

Page | 11 TLP:WHITE

https://doi.org/10.6028/NIST.SP.800-184
https://doi.org/10.6028/NIST.CSWP.04232020

TLP:WHITE

• Defining software development security requirements,
• Establishing SSDF roles and responsibilities within the SDLC,
• Automating developer and security toolchains, and
• Establishing software security criteria and processes to collect the data necessary for security

checks.

Actions to Prevent Supplying Malicious or Vulnerable Software
Vendors should implement an SSDF in the context of a secure development infrastructure. Vendors
should build that infrastructure with a view towards securing the entirety of the SDLC and can follow a
risk-based approach to select appropriate security controls for the anticipated development activities.29

Beyond the SSDF, vendors may want to approach the software development environment in a manner
similar to how the Federal Government approaches high-value assets (HVAs). If interested, vendors
could:

1. Establish an organization-wide HVA governance program.
2. Identify and prioritize HVA information systems.
3. Consider the interconnectivity and dependencies of information systems when determining

which systems are HVAs.
4. Develop a methodology for prioritizing HVAs based on criticality and mission importance.
5. Develop an assessment approach based on HVA prioritization.
6. Ensure timely remediation of identified vulnerabilities.30

Following these actions, CISA encourages vendors to follow a systems security engineering approach31

to build security into their development infrastructure. Vendors should build security with an
understanding of the interdependencies within the infrastructure and dependencies on connections with
external systems.

Vendors can use the SSDF to prevent malicious software content or vulnerabilities from entering the
cyber supply chain. NIST suggests practices to assist in protecting software and producing well-
secured software. These include:

• Defining criteria for software security checks to help ensure that the software
resulting from the SDLC meets the vendor’s expectations when it checks the
software’s security during development.

• Supplying software that satisfies security requirements and mitigates
security risks through design decisions.

• Protecting code from unauthorized access and tampering.
• Verifying that third-party software, such as libraries and other packages

incorporated into vendor code, complies with security requirements.
• Reusing existing, well-secured software to reduce the risk of introducing

vulnerabilities, when possible, instead of recreating functionality.
• Following secure coding practices to produce source code.

29 Joint Task Force, “Risk Management Framework for Information Systems and Organizations: A System Life Cycle Approach
for Security and Privacy,” NIST SP 800-37 Rev. 2 (December 2018), https://doi.org/10.6028/NIST.SP.800-37r2.
30 CISA, “CISA Insights: Secure High Value Assets (HVAs),” https://www.cisa.gov/sites/default/files/publications/CISAInsights-
Cyber-SecureHighValueAssets_S508C.pdf.
31 Ross, et al.

Page | 12 TLP:WHITE

https://doi.org/10.6028/NIST.SP.800-37r2
https://www.cisa.gov/sites/default/files/publications/CISAInsights-Cyber-SecureHighValueAssets_S508C.pdf
https://www.cisa.gov/sites/default/files/publications/CISAInsights-Cyber-SecureHighValueAssets_S508C.pdf

TLP:WHITE

• Performing in-house and third-party code review, analysis, and testing.
• Using properly configured compilation and build processes to improve the

security of executable code.
• Configuring software so that it is secure by default at the time of installation, such as:

o Avoiding the use of hardcoded passwords.
o Provisioning an operating system with its firewall enabled.
o Enabling only minimally required services "out of the box."

• Providing a mechanism for verifying software release integrity (in particular, the
protection of the code signing certificate) to help customers ensure that the
software they acquire has not been subjected to tampering.32

For additional details on how to approach these practices, CISA recommends that vendors review the
associated NIST publication, “Mitigating the Risk of Software Vulnerabilities by Adopting a Secure
Software Development Framework (SSDF).”

In addition, other NIST publications suggest that vendors consider implementing, where applicable:

• Formal methods—software development and analysis approaches based on
mathematics and logic, including type checking, correctness proofs, model-based
development, and correct-by-construction.

• System-level security—recent advances in hardware and software raise the
possibility of security-enforcing and intrusion-tolerant systems that are both
performance and cost effective.

• Additive software analysis—a comprehensive methodology for addressing
impediments to using multiple advanced software checking tools in concert for
synergy.

• Domain-specific software development frameworks—these promote the use
(and reuse) of well-tested, well-analyzed code, and thus reduce the incidence of
exploitable vulnerabilities.

• Moving target defenses and automatic software diversity—a collection of
techniques to automatically vary software’s detailed structures and properties
such that an attacker has much greater difficulty finding and exploiting any
weakness.33 For example, a vendor might implement exploit mitigation
technology to limit the impact of unidentified vulnerabilities on in-house, bespoke
code, open source, and software acquired from third-party vendors. The nature
of exploit mitigation should align to the inherent nature of risk in the code.

Actions to Mitigate Post-Deployment Malicious or Vulnerable Content
Although it is important to prevent the presence of malicious or vulnerable content within software, not
all vulnerabilities can be eliminated. However, vendors should make post-deployment mitigations
available.

Vendors should follow a set of practices to support such mitigations. These include:

• Archiving and protecting each release of software so that the vendor can

32 Dodson., 10–18.
33 Paul E. Black, et al., “Dramatically Reducing Software Vulnerabilities: Report to the White House Office of Science and
Technology Policy,” NISTIR 8151 (November 2016), https://doi.org/10.6028/NIST.IR.8151.

Page | 13 TLP:WHITE

https://doi.org/10.6028/NIST.IR.8151

TLP:WHITE

analyze, identify, and develop mechanisms to eliminate vulnerabilities
discovered post-release.

• Maintaining processes, and even a formal program, to identify and confirm
suspected vulnerabilities in software, whether identified by the vendor, its
customers, or third-party researchers.

• Establishing an assessment, prioritization, and remediation approach that
enables vulnerabilities to be remediated quickly.34

Vendors should develop software to enable future patching to eliminate undesirable
content. Additionally, in support of its software customers, a vendor should develop and
deliver a software component inventory (e.g., software bill of materials) to customers with

each release of software.35 Primary beneficiaries may include product developers, who incorporate
third-party software into their deliverables, as well as sophisticated customers. Coupled with tools that
can check the software component inventory against known vulnerabilities, including a software
component inventory can support customers before they deploy new or updated software within their
environments.

Finally, beyond the vulnerability identification and remediation practices previously highlighted,
a vendor should implement a disclosure practice for discovered vulnerabilities. This practice
should include identifying and making vulnerability mitigations available to customers as quickly

as possible (and ideally prior to or simultaneous to a disclosure), submitting vulnerabilities into the CVE
community and, if appropriate, becoming a CVE Numbering Authority.36

Actions to Increase Resilience in the Software Development Process
A vendor can use lessons learned and feedback loops to increase resilience.37
Specifically, analyzing discovered vulnerabilities and identifying their root c auses
allows a vendor to pinpoint opportunities for improvement in its SDLC, including its

SSDF. While this will not prevent or mitigate vulnerabilities from previously distributed software, it
implements a continuous improvement process, which enables the vendor to produce increasingly
secure code.

Considerations to Implementing a Secure Software Development Framework
The software supply chain is both exploitable by malicious actors and susceptible to the unintended
introduction of vulnerabilities. However, software customers and vendors can manage these risks
through both independent and collaborative efforts. Although they can use technical security controls to
prevent or mitigate software supply chain risk, customers and vendors should recognize that robust
planning and communication are fundamental to risk management in this area. Vendors should
incorporate security features in their software design plans. Customers can assist by communicating
security requirements to their vendors.

34 Ibid., 10, 19–-20.
35 National Telecommunications and Information Administration Multistakeholder Process on Software Component
Transparency Framing Working Group, “Framing Software Component Transparency: Establishing a Common Software Bill of
Material (SBOM),” (November 12, 2019), https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf.
36 For more information, see About CVE.
37 Dodson, et al., 20–21.

Page | 14 TLP:WHITE

https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

TLP:WHITE

Similarly, customers should make risk-informed decisions regarding software procurement and
deployment. Customers can build such considerations into their acquisition processes, and they can
select software based on vendor SDLC practices. Customers should request—and vendors should
disclose—those practices. In turn, vendors should make available technical details regarding their
software. If a customer understands the expected behaviors of software—such as its external
communication periodicity, the ports and protocols it uses for external communications, and the IP
range or domains with which it is expected to communicate—the customer can implement controls to
allow only such connections and monitor for deviations.

Even a vendor’s well-implemented SDLC and a customer’s astute procurement due diligence and
contracting provisions will not eliminate all vulnerabilities from entering the software supply chain.
Vendors and customers will need to mitigate vulnerabilities as they become known. Mitigation efforts
may include patching; as such, vendors should maintain a focus on vulnerability identification and
responsible disclosure in already-distributed software. Patch development and distribution should
receive similar attention, and vendors should document patching processes so that customers
understand how to participate.

A software bill of materials will also assist customers as they address previously unknown
vulnerabilities—or guide acquisition decisions if a software bill of materials suggests software contains
components known to be vulnerable. Often, a customer needs to understand whether a vulnerable
component exists in its enterprise environment.

RESOURCES
For further information, consider the following references contained within NIST’s documentation on
SSDF and C-SRCM.

SSDF
• NIST: Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software

Development Framework (SSDF)
• BSIMM: Building Security in Maturity Model (BSIMM) Version 11
• BSA: The BSA Framework for Secure Software: A New Approach to Securing the Software

Lifecycle, Version 1.1
• Institute for Defense Analyses (IDA): State-of-the-Art Resources (SOAR) for Software

Vulnerability Detection, Test, and Evaluation
• International Organization for Standardization/International Electrotechnical Commission

(ISO/IEC): Information technology – Security techniques – Application security – Part 1:
Overview and concepts, ISO/IEC 27034-1:2011

• Microsoft: Microsoft Security Development Lifecycle
• NIST: Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1
• NIST: SP 800-53 Rev. 5, Security and Privacy Controls for Information Systems and

Organizations
• NIST: SP 800-160 Vol. 1, Systems Security Engineering: Considerations for a Multidisciplinary

Approach in the Engineering of Trustworthy Secure Systems

Page | 15 TLP:WHITE

https://doi.org/10.6028/NIST.CSWP.04232020
https://doi.org/10.6028/NIST.CSWP.04232020
https://www.bsimm.com/download
https://www.bsa.org/files/reports/bsa_framework_secure_software_update_2020.pdf
https://www.bsa.org/files/reports/bsa_framework_secure_software_update_2020.pdf
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.iso.org/standard/44378.html
https://www.iso.org/standard/44378.html
https://www.iso.org/standard/44378.html
https://www.microsoft.com/en-us/securityengineering/sdl/
https://doi.org/10.6028/NIST.CSWP.04162018
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://doi.org/10.6028/NIST.SP.800-160v1
https://doi.org/10.6028/NIST.SP.800-160v1

TLP:WHITE

• Open Web Application Security Project (OWASP): OWASP Application Security Verification
Standard 4.0.2

• OWASP: Software Assurance Maturity Model Version 1.5
• Payment Card Industry (PCI) Security Standards Council: Secure Software Lifecycle (Secure

SLC) Requirements and Assessment Procedures Version 1.1
• Software Assurance Forum for Excellence in Code (SAFECode): Fundamental Practices for

Secure Software Development: Essential Elements of a Secure Development Lifecycle
Program, Third Edition

• SAFECode: Managing Security Risks Inherent in the Use of Third-Party Components
• SAFECode: Practical Security Stories and Security Tasks for Agile Development Environments
• SAFECode: Software Integrity Controls: An Assurance-Based Approach to Minimizing Risks in

the Software Supply Chain
• SAFECode: Tactical Threat Modeling

C-SCRM
• NIST SP 800-161: Supply Chain Risk Management Practices for Federal Information Systems

and Organizations 2015
• NIST: Cybersecurity Framework
• NIST: Risk Management Framework
• NIST SP 800-53 Rev. 5: Security and Privacy Controls for Information Systems and

Organizations
• NISTIR 8272: Impact Analysis Tool for Interdependent Cyber Supply Chain Risks
• NISTIR 8151: Dramatically Reducing Software Vulnerabilities
• NISTIR 8179: Criticality Analysis Process Model: Helping Organizations
• NISTIR 8276: Key Practices in Cyber Supply Chain Risk Management: Observations from

Industry
• NIST: Federal C-SCRM Forum
• NIST, DoD, DHS, GSA: Software and Supply Chain Assurance (SSCA) Forum
• NCCoE Demonstration Project

Page | 16 TLP:WHITE

https://github.com/OWASP/ASVS
https://github.com/OWASP/ASVS
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://csrc.nist.gov/publications/detail/sp/800-161/final
https://csrc.nist.gov/publications/detail/sp/800-161/final
https://www.nist.gov/cyberframework
https://www.nist.gov/cyberframework/risk-management-framework
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/nistir/8272/final
https://csrc.nist.gov/publications/detail/nistir/8151/final
https://csrc.nist.gov/publications/detail/nistir/8179/final
https://csrc.nist.gov/publications/detail/nistir/8276/final
https://csrc.nist.gov/publications/detail/nistir/8276/final
https://csrc.nist.gov/projects/cyber-supply-chain-risk-management/federal-c-scrm
https://csrc.nist.gov/projects/cyber-supply-chain-risk-management/ssca
https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance

	Introduction
	Software Supply Chain Risks
	Common Attack Techniques
	Hijacking Updates
	Undermining Codesigning
	Compromising Open-Source Code

	Software Supply Chain Attack Threat Profile
	Uniquely Vulnerable to Software Supply Chain Attacks
	Privileged Access
	Frequent Communication

	Consequences of Software Supply Chain Attacks

	Recommendations
	Recommendations for Customers
	Actions to Prevent Acquiring Malicious or Vulnerable Software

	Actions to Mitigate Deployed Malicious or Vulnerable Software
	Actions to Increase Resilience to a Successful Exploit
	Recommendations for Software Vendors
	Actions to Prevent Supplying Malicious or Vulnerable Software
	Actions to Mitigate Post-Deployment Malicious or Vulnerable Content
	Actions to Increase Resilience in the Software Development Process
	Considerations to Implementing a Secure Software Development Framework

	Resources
	SSDF
	C-SCRM

