CFATS Risk Tiering

Terry McClure
Deputy Branch Chief, Compliance, CISA Chemical Security

Sarah Easton
Risk Analyst, Risk and Data Analysis Section, Compliance Branch, CISA Chemical Security

Moderator: Zeina Azar
Section Chief, Standardization and Evaluations, Compliance Branch, CISA Chemical Security

#ChemicalSecurity
The CFATS Universe

- “Appendix A” – a list of 322 chemicals of interest (COI) at screening threshold quantities (STQ) and concentrations that require reporting to CISA
- Any facility with COI at or above STQ is subject to comply with CFATS

Chemical Facilities Come in All Shapes and Sizes

- Chemical Manufacture
- Oil Refineries
- Food Processing
- Wineries
- Colleges and Universities
- Farm Cooperatives
Essentials of the CFATS Program

- Facilities with **Chemicals of Interest** at or above the screening threshold quantities and concentrations must submit an online risk assessment (**Top-Screen**)

- CISA uses information submitted through the **Top-Screen** to determine if a facility is high-risk / covered
 - The tiering methodology accounts for elements of risk
 - **Threat, Vulnerability, Consequence**
 - Covered facilities are placed in one of four tiers
 - **Tier one** represents the **highest risk**
 - Covered facilities are required to develop and implement security plans that meet applicable risk-based performance standards (**RBPS**)
 - Chemical Security Inspectors across the U.S. conduct inspections, assist with compliance, and perform outreach
The CFATS Process

All Facilities with COI

Submit Top-Screen

Receive a Tier (1-4)
or be deemed not high-risk

Facility may be tiered in or drop out

High-Risk Facilities

If the facility receives a tier...

Provide a Security Vulnerability Assessment (SVA)/Complete Site Security Plan (SSP) or Alternative Security Program (ASP)

Receive Authorization and an Authorization Inspection

Receive Approval of the SSP/ASP

Implement Planned Measures and Undergo Regular Compliance Inspections

CISA provides compliance assistance upon request at any stage of this process

More than 150 Chemical Security Inspectors are available for support across the country
Filing Top-Screens
Predictive & Hypothetical

Business Operations
Predictive Top-Screen Filing
- Recommended for business operations that require constantly fluctuating quantity of COI

Business Planning
Hypothetical Top-Screen Filing
Businesses may request consults with CISA when planning future operations to analyze tiering impacts
May include:
- Changes in quantity, concentration, storage conditions or location of COI
- New facility construction
What should a facility do if it believes the risk-based tier determination that DHS has assigned it no longer reflects the actual security risk posed to the facility?

Section 27.120(d) of the CFATS Rule allows a covered chemical facility that has modified the facility, its processes or quantities of materials it possesses, and that believes those modifications could affect its obligations under CFATS, to request a consultation under § 27.120(c). In addition, under § 27.205(b), a covered chemical facility that has materially altered its operations may file a Request for Redetermination and may request a meeting regarding that request. Section 27.205(b) requires DHS to notify the facility of the results of the Redetermination request within 45 days of the request or within 45 days of the meeting.
Can a facility’s tiering level ever change?

A facility’s tier can change based on a revised Top-Screen submitted to DHS. For example, a tier determination may change if:

- Facility operations change significantly. This could include, for example, the removal or addition of COI, changes in operations or processes, and/or changes in threats or vulnerabilities. Such changes typically would be site-specific and will be reviewed on a case-by-case basis.

- Resubmission of a Top-Screen reveals changes in threat, vulnerability, or consequence. Facilities with approved SVA/SSPs are required to resubmit Top-Screens every two years for Tier 1 and 2 facilities and every three years for Tier 3 and 4 facilities.

- In rare cases, DHS considers new information about a site, chemical, threat, or process that warrants revising an existing facility’s tier up or down. DHS will provide appropriate notification to the facility of the reasons justifying a change in the facility’s existing tier.
High-level Components and Data Flow

- **Facility Registration**
- **Top-Screen Survey**

Classified Environment (ORNL)
- Risk Engine Logic (Primarily PL-SQL)

Risk Engine Data (Oracle)
- Secure Transfer (via DVD)
- Draft Tiers (via DVD)

Sensitive But Unclassified (ORNL)
- Atmospheric Dispersion Modeling (SCIPUFF)
- Toxic scenarios (via DVD)
- Dispersion results (via DVD)

Top-Screen Review and Approval Processes

2022 Chemical Security Summit
August 25, 2022
Risk Engine

- Algorithms
- Software code
- Databases
- Supporting data
 - Threat scoring
 - Vulnerability scoring
 - Chemical properties

Facility and Chemical Information

Risk Engine

Tier 1
Tier 2
Tier 3
Tier 4

Calculated Risk Tiers
Risk Approach

\[R = T \times V \times C \]

Consequence
- Characterization of the severity of an attack, if an adversary succeeds in causing their desired outcome
- Scored as estimated number of potential fatalities using physics-based modeling

Vulnerability
- Relative likelihood of an attempted attack being successful
- Based on inherent facility and storage/packaging characteristics that reduce vulnerability

Threat
- Relative likelihood that an adversary will undertake an attack
- Adapted from threat data from Intelligence Community elicitation and subject matter expert opinion

Risk Score
- Multiplication \(T \times V \times C \) applies ‘AND’ logic to risk
- Risk scores are mapped to Tiers 1 – 4
- Scores below the Tier 4 threshold are designated as not high risk
Risk Model Summary

<table>
<thead>
<tr>
<th>CFATS Security Issue</th>
<th>Threat</th>
<th>Vulnerability</th>
<th>Consequence (Potential Fatalities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxics</td>
<td>Adapt from Intelligence Community elicitation</td>
<td>Inherent vulnerability reduction</td>
<td>SCIPUFF dispersion modeling</td>
</tr>
<tr>
<td>Flammables</td>
<td>SME elicitation</td>
<td></td>
<td>VCE and blast modeling</td>
</tr>
<tr>
<td>Explosives</td>
<td>SME elicitation</td>
<td></td>
<td>Blast modeling</td>
</tr>
<tr>
<td>Theft/ Diversion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Weapons of Mass Effect | Adapt from Intelligence Community elicitation | Inherent vulnerability reduction | Toxic or blast effects for four offsite scenarios:
1. Subway car
2. Office building exterior
3. Outdoor urban event
4. Bulk transportation release urban area |
| Chemical Weapons and CW Precursors | | | |
| Explosives and IED Precursors | SME elicitation | | |
| **Sabotage/ Contamination** | SME elicitation | Inherent vulnerability reduction | SCIPUFF dispersion modeling |
Attack Scenarios by Security Issue

<table>
<thead>
<tr>
<th>Security Issue</th>
<th>VBIED</th>
<th>Assault Team</th>
<th>Urban Mass Transit</th>
<th>Urban Event</th>
<th>Office Building</th>
<th>Bulk Rail</th>
<th>Bulk Road</th>
<th>Urban Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammable</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosive</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theft and Diversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabotage/Contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attack Scenarios for Release

1. **Vehicle Borne Improvised Explosive Device (VBIED)**
 1. Attack with a vehicle
 2. Adversary may ram through perimeter barriers, covertly reach a target, or for targets near a perimeter, detonate from offsite

2. **Assault Team**
 1. Group of armed adversaries breach the facility using force
 2. Place separate charges on one or more targets

- Scenario quantities (for both scenarios) are:
 - Toxics: Largest quantity within a 170-ft radius circle
 - Flammables: Single largest inventory
 - Explosives: Total of all explosives within 170-ft radius circle

Release attacks are on-site, potentially affecting facility and community populations.
Blast Casualty Model

- Independent casualty models based on population location
- Models used for
 - Release flammables
 - Release explosives
 - Theft and diversion
 - Urban event (outdoor populations only)
 - Office Building (indoor and outdoor populations)
 - Bulk transport (road/rail)

<table>
<thead>
<tr>
<th>Outdoor populations</th>
<th>Direct blast effects (e.g., lung damage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indirect blast effects (e.g., head injury)</td>
</tr>
<tr>
<td>Indoor populations</td>
<td>Blast effects on structure, for example:</td>
</tr>
<tr>
<td></td>
<td>• Shrapnel (Flying glass and wall debris)</td>
</tr>
<tr>
<td></td>
<td>• Building Failure (Collapse of walls or roofs)</td>
</tr>
</tbody>
</table>
Release Explosives and Flammables

- Consequence scoring based on death and injury curves which are translated to fatality zones laid over LandScan™ population data
Population Exposure

LandScan™ population data

- Developed and maintained at the Oak Ridge National Laboratory
- Three arc second (300 ft) grid
- Day and night population estimates
Pre-engineered Metal Buildings with Partial Masonry Block Wall

Building Examples
Pre-engineered Metal Buildings with Partial Masonry Block Wall - Animation
Pre-engineered Metal Buildings with Partial Masonry Block Wall - Animation

Pre-engineered Metal Buildings with Partial Masonry Block Wall: 4,000 lb TNT – 200 ft (Inside View)
Release Toxic Modeling Approach

- Physics-based approach using reasonable worst-case modeling assumptions
 - Atmospheric dispersion modeling
 - Second-order Closure Integrated Puff (SCIPUFF) model
 - Casualty modeling
 - Fatality probability from toxic vapor exposure
 - Population exposure
 - LandScan™ population data

- Primary drivers for results
 - Chemical toxicity
 - Quantity and concentration released
 - Potentially exposed population

- It is assumed that self-evacuation can occur.
Chemical exposure over time:
- Is much higher outdoors
- Drops off dramatically with distance from release point
Population Exposure

LandScan™ population data
- Developed and maintained at the Oak Ridge National Laboratory
- Three arc second (300 ft) grid
- Day and night population estimates
Risk Model Summary

<table>
<thead>
<tr>
<th>CFATS Security Issue</th>
<th>Threat</th>
<th>Vulnerability</th>
<th>Consequence (Potential Fatalities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxics</td>
<td>Adapt from Intelligence Community elicitation</td>
<td>Inherent vulnerability reduction</td>
<td>SCIPUFF dispersion modeling</td>
</tr>
<tr>
<td>Flammables</td>
<td>SME elicitation</td>
<td></td>
<td>VCE and blast modeling</td>
</tr>
<tr>
<td>Explosives</td>
<td>SME elicitation</td>
<td></td>
<td>Blast modeling</td>
</tr>
<tr>
<td>Theft/ Diversion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Weapons of Mass Effect | Adapt from Intelligence Community elicitation | Inherent vulnerability reduction | Toxic or blast effects for four offsite scenarios:
1. Subway car
2. Office building exterior
3. Outdoor urban event
4. Bulk transportation release urban area |
| Chemical Weapons and CW Precursors | | | |
| Explosives and IED Precursors | SME elicitation | | |
| Sabotage/ Contamination | SME elicitation | Inherent vulnerability reduction | SCIPUFF dispersion modeling |
Attack Scenarios for Theft and Diversion

1. Urban Mass Transit

- **Blast Attack (EXP/IEDP):** Subway cars at full capacity (i.e., rush hour)
- **Toxic Attack (WME/CW/CWP):** Explosives placed in each of three cars

2. Urban Event

- **Blast Attack (EXP/IEDP):** Urban event with large attendance
- **Toxic Attack (WME/CW/CWP):** Vehicle with explosives

Scenario quantities are determined based on facility reported data and considerations as to what can be reasonably brought into the target area.

Theft/diversion attacks are off-site, potentially affecting scenario-specific populations.
Attack Scenarios for Theft and Diversion

3. Office Building Blast

- Target is large office building
- Vehicle with explosives

4. Bulk Transport – Road or Rail

- Release in urban area
- Blast Attack (EXP)
- Truck or railcar with explosives
- Toxic Attack (WME)
- Truck or railcar with explosives

Scenario quantities are determined based on facility reported data and considerations as to what can be reasonably brought into the target area.

Theft/diversion attacks are off-site, potentially affecting scenario-specific populations.
Attack Scenario for Sabotage and Contamination

- Attack causing
 - Contamination of a transport container on-site
 - Release from contaminated road or rail transport container offsite

- Sabotage COIs are water-reactive chemicals that generate a toxic inhalation product when exposed to water

- Two versions of this scenario: Road and Rail.
 - The version of the scenario used depends on what type of transportation container is reported by the facility. Both versions of this scenario are evaluated for facilities that report both Road and Rail types.

- Scenario modeled as a release in an urban area of a toxic reaction product generated from a bulk transportation container that has been contaminated with water.

- Scenario quantities determined based on facility reported data and chemical-specific characteristics for reaction of the COI with water.
Outreach Resources

CISA is committed to promoting chemical security awareness through outreach and fostering relationships within communities. CFATS continually develops new outreach resources in support of its outreach efforts and commitment to provide stakeholders with informative resources, including:

- Tiering Methodology Fact Sheet
- Top-Screen Submission Considerations
- CFATS Overview Fact Sheet
- CFATS First Steps Fact Sheet
- Top Regulated COI Fact Sheet
- RBPS-Specific Fact Sheets
- Industry-Specific Fact Sheets
For further questions & technical consultations:

CFATSRiskandData@cisa.dhs.gov

sarah.easton@cisa.dhs.gov

terry.mcclure@cisa.dhs.gov